Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Physical Sciences and Mathematics

University of Kentucky

Membrane trafficking

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Organelle-Specific Single-Molecule Imaging Of Α4Β2 Nicotinic Receptors Reveals The Effect Of Nicotine On Receptor Assembly And Cell-Surface Trafficking, Ashley M. Fox-Lee, Faruk H. Moonschi, Christopher I. Richards Oct 2017

Organelle-Specific Single-Molecule Imaging Of Α4Β2 Nicotinic Receptors Reveals The Effect Of Nicotine On Receptor Assembly And Cell-Surface Trafficking, Ashley M. Fox-Lee, Faruk H. Moonschi, Christopher I. Richards

Chemistry Faculty Publications

Nicotinic acetylcholine receptors (nAChRs) assemble in the endoplasmic reticulum (ER) and traffic to the cell surface as pentamers composed of α and β subunits. Many nAChR subtypes can assemble with varying subunit ratios, giving rise to multiple stoichiometries exhibiting different subcellular localization and functional properties. In addition to the endogenous neurotransmitter acetylcholine, nicotine also binds and activates nAChRs and influences their trafficking and expression on the cell surface. Currently, no available technique can specifically elucidate the stoichiometry of nAChRs in the ER versus those in the plasma membrane. Here, we report a method involving single-molecule fluorescence measurements to determine the …


Utilizing Phluorin-Tagged Receptors To Monitor Subcellular Localization And Trafficking, Ashley M. Fox-Loe, Brandon J. Henderson, Christopher I. Richards Mar 2017

Utilizing Phluorin-Tagged Receptors To Monitor Subcellular Localization And Trafficking, Ashley M. Fox-Loe, Brandon J. Henderson, Christopher I. Richards

Chemistry Faculty Publications

Understanding membrane protein trafficking, assembly, and expression requires an approach that differentiates between those residing in intracellular organelles and those localized on the plasma membrane. Traditional fluorescence-based measurements lack the capability to distinguish membrane proteins residing in different organelles. Cutting edge methodologies transcend traditional methods by coupling pH-sensitive fluorophores with total internal reflection fluorescence microscopy (TIRFM). TIRF illumination excites the sample up to approximately 150 nm from the glass-sample interface, thus decreasing background, increasing the signal to noise ratio, and enhancing resolution. The excitation volume in TIRFM encompasses the plasma membrane and nearby organelles such as the peripheral ER. Superecliptic …