Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

A Monomeric Protein In The Golgi Membrane Catalyzes Both N-Deacetylation And N-Sulfation Of Heparan Sulfate, Elisabet Mandon, Ellis Kempner, Masayuki Ishihara, Carlos Hirschberg Feb 2012

A Monomeric Protein In The Golgi Membrane Catalyzes Both N-Deacetylation And N-Sulfation Of Heparan Sulfate, Elisabet Mandon, Ellis Kempner, Masayuki Ishihara, Carlos Hirschberg

Elisabet Mandon

Recent studies have shown that the rat liver heparan sulfate N-deacetylase/N-sulfotransferase is a glycoprotein encoded by a single polypeptide chain of 882 amino acids. Using radiation inactivation analyses, we have now determined that in rat liver Golgi vesicles the target size for the N-deacetylase is 88 +/- 14 kDa, whereas that of the N-sulfotransferase is 92 +/- 8 kDa. These results, together with previous biochemical and molecular cloning approaches, demonstrate that 1) in rat liver Golgi membranes there exists only on population of molecules expressing both activities, 2) the active protein in the Golgi membrane functions as a monomer, and …


A Mutant Yeast Deficient In Golgi Transport Of Uridine Diphosphate N-Acetylglucosamine, Claudia Abeijon, Elisabet Mandon, Phillips Robbins, Carlos Hirschberg Feb 2012

A Mutant Yeast Deficient In Golgi Transport Of Uridine Diphosphate N-Acetylglucosamine, Claudia Abeijon, Elisabet Mandon, Phillips Robbins, Carlos Hirschberg

Elisabet Mandon

Mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they have terminal alpha1-->2-linked N-acetylglucosamine and lack mannose phosphate. In a previous study, Douglas and Ballou (Douglas, R. K., and Ballou, C. E. (1982) Biochemistry 21, 1561-1570) characterized a mutant, mnn2-2, which lacked terminal N-acetylglucosamine in its mannoproteins. The mutant had normal levels of N-acetylglucosaminyltransferase activity, and the partially purified enzyme from wild-type and mutant cells had the same apparent size, heat stability, affinity for substrates, metal requirement, and subcellular location. No qualitative or quantitative differences were found between mutant and wild-type cells in …


Guanosine Diphosphatase Is Required For Protein And Sphingolipid Glycosylation In The Golgi Lumen Of Saccharomyces Cerevisiae, Claudia Abeijon, Ken Yanagisawa, Elisabet Mandon, Alex Hausler, Kelley Moremen, Carlos Hirschberg, Phillips Robbins Feb 2012

Guanosine Diphosphatase Is Required For Protein And Sphingolipid Glycosylation In The Golgi Lumen Of Saccharomyces Cerevisiae, Claudia Abeijon, Ken Yanagisawa, Elisabet Mandon, Alex Hausler, Kelley Moremen, Carlos Hirschberg, Phillips Robbins

Elisabet Mandon

Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn …