Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Crystal Structure Of Human Thymidylate Synthase: A Structural Mechanism For Guiding Substrates Into The Active Site, Celia Schiffer, Ian Clifton, V. Jo Davisson, Daniel Santi, Robert Stroud Nov 2011

Crystal Structure Of Human Thymidylate Synthase: A Structural Mechanism For Guiding Substrates Into The Active Site, Celia Schiffer, Ian Clifton, V. Jo Davisson, Daniel Santi, Robert Stroud

Celia A. Schiffer

The crystal structure of human thymidylate synthase, a target for anti-cancer drugs, is determined to 3.0 A resolution and refined to a crystallographic residual of 17.8%. The structure implicates the enzyme in a mechanism for facilitating the docking of substrates into the active site. This mechanism involves a twist of approximately 180 degrees of the active site loop, pivoted around the neighboring residues 184 and 204, and implicates ordering of external, eukaryote specific loops along with the well-characterized closure of the active site upon substrate binding. The highly conserved, but eukaryote-specific insertion of twelve residues 90-101 (h117-128), and of eight …


Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, …


Structural Basis For Coevolution Of A Human Immunodeficiency Virus Type 1 Nucleocapsid-P1 Cleavage Site With A V82a Drug-Resistant Mutation In Viral Protease, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer Nov 2011

Structural Basis For Coevolution Of A Human Immunodeficiency Virus Type 1 Nucleocapsid-P1 Cleavage Site With A V82a Drug-Resistant Mutation In Viral Protease, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer

Celia A. Schiffer

Maturation of human immunodeficiency virus (HIV) depends on the processing of Gag and Pol polyproteins by the viral protease, making this enzyme a prime target for anti-HIV therapy. Among the protease substrates, the nucleocapsid-p1 (NC-p1) sequence is the least homologous, and its cleavage is the rate-determining step in viral maturation. In the other substrates of HIV-1 protease, P1 is usually either a hydrophobic or an aromatic residue, and P2 is usually a branched residue. NC-p1, however, contains Asn at P1 and Ala at P2. In response to the V82A drug-resistant protease mutation, the P2 alanine of NC-p1 mutates to valine …


How Does A Symmetric Dimer Recognize An Asymmetric Substrate? A Substrate Complex Of Hiv-1 Protease, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

How Does A Symmetric Dimer Recognize An Asymmetric Substrate? A Substrate Complex Of Hiv-1 Protease, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with …


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate …


Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer Nov 2011

Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer …


Structure Of A Phage Display-Derived Variant Of Human Growth Hormone Complexed To Two Copies Of The Extracellular Domain Of Its Receptor: Evidence For Strong Structural Coupling Between Receptor Binding Sites, Celia Schiffer, Mark Ultsch, Scott Walsh, William Somers, Abraham De Vos, Anthony Kossiakoff Nov 2011

Structure Of A Phage Display-Derived Variant Of Human Growth Hormone Complexed To Two Copies Of The Extracellular Domain Of Its Receptor: Evidence For Strong Structural Coupling Between Receptor Binding Sites, Celia Schiffer, Mark Ultsch, Scott Walsh, William Somers, Abraham De Vos, Anthony Kossiakoff

Celia A. Schiffer

The structure of the ternary complex between the phage display- optimized, high-affinity Site 1 variant of human growth hormone (hGH) and two copies of the extracellular domain (ECD) of the hGH receptor (hGHR) has been determined at 2.6 A resolution. There are widespread and significant structural differences compared to the wild-type ternary hGH hGHR complex. The hGH variant (hGH(v)) contains 15 Site 1 mutations and binds>10(2) tighter to the hGHR ECD (hGH(R1)) at Site 1. It is biologically active and specific to hGHR. The hGH(v) Site 1 interface is somewhat smaller and 20% more hydrophobic compared to the wild-type …


Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer Nov 2011

Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer

Celia A. Schiffer

TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme …


Hydrophobic Sliding: A Possible Mechanism For Drug Resistance In Human Immunodeficiency Virus Type 1 Protease, Jennifer Foulkes-Murzycki, Walter Scott, Celia Schiffer Nov 2011

Hydrophobic Sliding: A Possible Mechanism For Drug Resistance In Human Immunodeficiency Virus Type 1 Protease, Jennifer Foulkes-Murzycki, Walter Scott, Celia Schiffer

Celia A. Schiffer

Hydrophobic residues outside the active site of HIV-1 protease frequently mutate in patients undergoing protease inhibitor therapy; however, the mechanism by which these mutations confer drug resistance is not understood. From analysis of molecular dynamics simulations, 19 core hydrophobic residues appear to facilitate the conformational changes that occur in HIV-1 protease. The hydrophobic core residues slide by each other, exchanging one hydrophobic van der Waal contact for another, with little energy penalty, while maintaining many structurally important hydrogen bonds. Such hydrophobic sliding may represent a general mechanism by which proteins undergo conformational changes. Mutation of these residues in HIV-1 protease …


Viability Of A Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variant: Structural Insights For Better Antiviral Therapy, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer Nov 2011

Viability Of A Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variant: Structural Insights For Better Antiviral Therapy, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer

Celia A. Schiffer

Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more …