Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2020

Remote sensing

Discipline
Institution
Publication

Articles 1 - 13 of 13

Full-Text Articles in Life Sciences

Classifying Reflectance Targets Under Ambient Light Conditions Using Passive Spectral Measurements, Ali Hamidisepehr, Michael P. Sama, Joseph S. Dvorak, Ole O. Wendroth, Michael D. Montross Sep 2020

Classifying Reflectance Targets Under Ambient Light Conditions Using Passive Spectral Measurements, Ali Hamidisepehr, Michael P. Sama, Joseph S. Dvorak, Ole O. Wendroth, Michael D. Montross

Biosystems and Agricultural Engineering Faculty Publications

Collecting remotely sensed spectral data under varying ambient light conditions is challenging. The objective of this study was to test the ability to classify grayscale targets observed by portable spectrometers under varying ambient light conditions. Two sets of spectrometers covering ultraviolet (UV), visible (VIS), and near−infrared (NIR) wavelengths were instrumented using an embedded computer. One set was uncalibrated and used to measure the raw intensity of light reflected from a target. The other set was calibrated and used to measure downwelling irradiance. Three ambient−light compensation methods that successively built upon each other were investigated. The default method used a variable …


Spatiotemporal Mapping And Monitoring Of Mangrove Forests Changes From 1990 To 2019 In The Northern Emirates, Uae Using Random Forest, Kernel Logistic Regression And Naive Bayes Tree Models, Samy I. Elmahdy, Tarig A. Ali, Mohamed M. Mohamed, Fares M. Howari, Mohamed Abouleish, Daniel Simonet Jul 2020

Spatiotemporal Mapping And Monitoring Of Mangrove Forests Changes From 1990 To 2019 In The Northern Emirates, Uae Using Random Forest, Kernel Logistic Regression And Naive Bayes Tree Models, Samy I. Elmahdy, Tarig A. Ali, Mohamed M. Mohamed, Fares M. Howari, Mohamed Abouleish, Daniel Simonet

All Works

© Copyright © 2020 Elmahdy, Ali, Mohamed, Howari, Abouleish and Simonet. Mangrove forests are acting as a green lung for the coastal cities of the United Arab Emirates, providing a habitat for wildlife, storing blue carbon in sediment and protecting shoreline. Thus, the first step toward conservation and a better understanding of the ecological setting of mangroves is mapping and monitoring mangrove extent over multiple spatial scales. This study aims to develop a novel low-cost remote sensing approach for spatiotemporal mapping and monitoring mangrove forest extent in the northern part of the United Arab Emirates. The approach was developed based …


Pre-Emptive Detection Of Mature Pine Drought Stress Using Multispectral Aerial Imagery, Nancy Grulke, Jason Maxfield, Phillip Riggan, Charlie Schrader-Patton Jul 2020

Pre-Emptive Detection Of Mature Pine Drought Stress Using Multispectral Aerial Imagery, Nancy Grulke, Jason Maxfield, Phillip Riggan, Charlie Schrader-Patton

Biology Faculty Publications and Presentations

Drought, ozone (O3), and nitrogen deposition (N) alter foliar pigments and tree crown structure that may be remotely detectable. Remote sensing tools are needed that pre-emptively identify trees susceptible to environmental stresses could inform forest managers in advance of tree mortality risk. Jeffrey pine, a component of the economically important and widespread western yellow pine in North America was investigated in the southern Sierra Nevada. Transpiration of mature trees differed by 20% between microsites with adequate (mesic (M)) vs. limited (xeric (X)) water availability as described in a previous study. In this study, in-the-crown morphological traits (needle chlorosis, …


Extreme Fire As A Management Tool To Combat Regime Shifts In The Range Of The Endangered American Burying Beetle, Alison K. Ludwig, Daniel R. Uden, Dirac Twidwell Apr 2020

Extreme Fire As A Management Tool To Combat Regime Shifts In The Range Of The Endangered American Burying Beetle, Alison K. Ludwig, Daniel R. Uden, Dirac Twidwell

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

This study is focused on the population of federally-endangered American burying beetles in south-central Nebraska. It is focused on changes in land cover over time and at several levels of spatial scale, and how management efforts are impacting both the beetle and a changing landscape. Our findings are applicable to a large portion of the Great Plains, which is undergoing the same shift from grassland to woodland, and to areas where the beetle is still found.


Evaluating Potential Effects Of 2019 Australian Bushfires On Animal Species, Protected Land, And Land Cover, Alyssa J. Kaewwilai Apr 2020

Evaluating Potential Effects Of 2019 Australian Bushfires On Animal Species, Protected Land, And Land Cover, Alyssa J. Kaewwilai

Student Publications

The 2019-2020 Australian bushfire event had exceptionally dry, hot conditions as well as high potential impacts on the country’s wildlife and natural resources. The purpose of the study was to analyze the potential impacts of the 2019 Australian bushfire event on animal species, protected land, and varied land cover types. The research question of this project is: how does the location of the Australian Bushfires of 2020 potentially impact animal species, protected land and national parks, as well as different land covers? Raster calculator was used to combine and classify layers from the MODIS Burned Area Product of burned (1) …


Sea Wrack Delivery And Accumulation On Islands: Factors That Mediate Marine Nutrient Permeability, Sara B. Wickham, Nancy Shackelford, Chris T. Darimont, Wiebe Nijland, Luba Y. Reshitnyk, John D. Reynolds, Brian M. Starzomski Feb 2020

Sea Wrack Delivery And Accumulation On Islands: Factors That Mediate Marine Nutrient Permeability, Sara B. Wickham, Nancy Shackelford, Chris T. Darimont, Wiebe Nijland, Luba Y. Reshitnyk, John D. Reynolds, Brian M. Starzomski

Biogeography and Ecological Opportunity Collection

Sea wrack provides an important vector of marine-derived nutrients to many terrestrial environments. However, little is known about the processes that facilitate wrack transport, deposition, and accumulation on islands. Three broad factors can affect the stock of wrack along shorelines: the amount of potential donor habitat nearby, climatic events that dislodge seaweeds and transfer them ashore, and physical characteristics of shorelines that retain wrack at a site. To determine when, where, and how wrack accumulates on island shorelines, we surveyed 455 sites across 101 islands in coastal British Columbia, Canada. At each site, we recorded wrack biomass, species composition, and …


Remote Sensing Monitoring Of Vegetation Dynamic Changes After Fire In The Greater Hinggan Mountain Area: The Algorithm And Application For Eliminating Phenological Impacts, Zhibin Huang, Chunxiang Cao, Wei Chen, Min Xu, Yongfeng Dang, Ramesh P. Singh, Barjeece Bashir, Bo Xie, Xiaojuan Lin Jan 2020

Remote Sensing Monitoring Of Vegetation Dynamic Changes After Fire In The Greater Hinggan Mountain Area: The Algorithm And Application For Eliminating Phenological Impacts, Zhibin Huang, Chunxiang Cao, Wei Chen, Min Xu, Yongfeng Dang, Ramesh P. Singh, Barjeece Bashir, Bo Xie, Xiaojuan Lin

Mathematics, Physics, and Computer Science Faculty Articles and Research

Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances and the monitoring of forest restoration are critical for forest management. Vegetation phenology information in remote sensing images may interfere with the monitoring of vegetation restoration, but little research has been done on this issue. Remote sensing and the geographic information system (GIS) have emerged as important tools in providing valuable information about vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively consistent …


A Review Of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data, Linglin Zeng, Brian D. Wardlow, Daxiang Xiang, Shun Hu, Deren Li Jan 2020

A Review Of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data, Linglin Zeng, Brian D. Wardlow, Daxiang Xiang, Shun Hu, Deren Li

School of Natural Resources: Faculty Publications

Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes, and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting …


Improving On Modis Mcd64a1 Burned Area Estimates In Grassland Systems: A Case Study In Kansas Flint Hills Tall Grass Prairie, Rheinhardt Scholtz, Jayson Prentice, Yao Tang, Dirac Twidwell Jan 2020

Improving On Modis Mcd64a1 Burned Area Estimates In Grassland Systems: A Case Study In Kansas Flint Hills Tall Grass Prairie, Rheinhardt Scholtz, Jayson Prentice, Yao Tang, Dirac Twidwell

Department of Agronomy and Horticulture: Faculty Publications

Uncertainty in satellite-derived burned area estimates are especially high in grassland systems, which are some of the most frequently burned ecosystems in the world. In this study, we compare differences in predicted burned area estimates for a region with the highest fire activity in North America, the Flint Hills of Kansas, USA, using the moderate resolution imaging spectroradiometer (MODIS) MCD64A1 burned area product and a customization of the MODIS MCD64A1 product using a major ground-truthing effort by the Kansas Department of Health and Environment (KDHE-MODIS customization). Local-scale ground-truthing and the KDHE-MODIS product suggests MODIS burned area estimates under predicted fire …


Improving The Accessibility And Transferability Of Machine Learning Algorithms For Identification Of Animals In Camera Trap Images: Mlwic2, Michael A. Tabak, Mohammad S. Norouzzadeh, David W. Wolfson, Erica J. Newton, Raoul K. Boughton, Jacob S. Ivan, Eric Odell, Eric S. Newkirk, Reesa Y. Conrey, Jennifer Stenglein, Fabiola Iannarilli, John Erb, Ryan K. Brook, Amy J. Davis, Jesse Lewis, Daniel P. Walsh, James C. Beasley, Kurt C. Vercauteren, Jeff Clune, Ryan S. Miller Jan 2020

Improving The Accessibility And Transferability Of Machine Learning Algorithms For Identification Of Animals In Camera Trap Images: Mlwic2, Michael A. Tabak, Mohammad S. Norouzzadeh, David W. Wolfson, Erica J. Newton, Raoul K. Boughton, Jacob S. Ivan, Eric Odell, Eric S. Newkirk, Reesa Y. Conrey, Jennifer Stenglein, Fabiola Iannarilli, John Erb, Ryan K. Brook, Amy J. Davis, Jesse Lewis, Daniel P. Walsh, James C. Beasley, Kurt C. Vercauteren, Jeff Clune, Ryan S. Miller

USDA Wildlife Services: Staff Publications

Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely and noninvasively observe animals. The vast number of images collected from camera trap projects has prompted some biologists to employ machine learning algorithms to automatically recognize species in these images, or at least filter-out images that do not contain animals. These approaches are often limited by model transferability, as a model trained to recognize species from one location might not work as well for the same species in different locations. Furthermore, these methods often require advanced computational skills, making them inaccessible to many biologists. We used 3 million camera …


Understanding Of Contemporary Regional Sea-Level Change And The Implications For The Future, Benjamin D. Hamlington, Alex S. Gardner, Erik Ivins, Jan T. Lenaerts, J. T. Reager, David S. Trossman, Edward D. Zaron, Surendra Adhikari, Anthony Arendt, Andy Aschwanden, Brian D. Beckley, David P. Bekaert, Geoffrey Blewitt, Lambert Caron, Don P. Chambers, Hrishikesh A. Chandanpurkar, Knut Christianson, Beata Csatho, Richard I. Cullather, Robert M. Deconto, John T. Fasullo, Thomas Frederikse, Jeffrey T. Freymueller, Daniel M. Gilford, Manuela Girotto, William C. Hammond, Regine Hock, Nicholas Holschuh, Robert E. Kopp, Felix Landerer, Eric Larour, Dimitris Menemenlis, Mark Merrifield, Jerry X. Mitrovica, R. Steven Nerem, Isabel J. Nias, Veronica Nieves, Sophie Nowicki, Kishore Pangaluru, Christopher G. Piecuch, Richard D. Ray, David R. Rounce, Nicole-Jeanne Schlegel, Hélène Seroussi, Manoochehr Shirzaei, William V. Sweet, Isabella Velicogna, Nadya Vinogradova, Thomas Wahl, David N. Wiese, Michael J. Willis Jan 2020

Understanding Of Contemporary Regional Sea-Level Change And The Implications For The Future, Benjamin D. Hamlington, Alex S. Gardner, Erik Ivins, Jan T. Lenaerts, J. T. Reager, David S. Trossman, Edward D. Zaron, Surendra Adhikari, Anthony Arendt, Andy Aschwanden, Brian D. Beckley, David P. Bekaert, Geoffrey Blewitt, Lambert Caron, Don P. Chambers, Hrishikesh A. Chandanpurkar, Knut Christianson, Beata Csatho, Richard I. Cullather, Robert M. Deconto, John T. Fasullo, Thomas Frederikse, Jeffrey T. Freymueller, Daniel M. Gilford, Manuela Girotto, William C. Hammond, Regine Hock, Nicholas Holschuh, Robert E. Kopp, Felix Landerer, Eric Larour, Dimitris Menemenlis, Mark Merrifield, Jerry X. Mitrovica, R. Steven Nerem, Isabel J. Nias, Veronica Nieves, Sophie Nowicki, Kishore Pangaluru, Christopher G. Piecuch, Richard D. Ray, David R. Rounce, Nicole-Jeanne Schlegel, Hélène Seroussi, Manoochehr Shirzaei, William V. Sweet, Isabella Velicogna, Nadya Vinogradova, Thomas Wahl, David N. Wiese, Michael J. Willis

Marine Science Faculty Publications

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the …


A Decade Of Unmanned Aerial Systems In Irrigated Agriculture In The Western U.S., Jose L. Chavez, Alfonso F. Torres-Rua, Wayne E. Woldt, Huihui Zhang, Christopher Robertson, Gary W. Marek, Dong Wang, Derek M. Heeren, Saleh Taghvaeian, Christopher M. U. Neale Jan 2020

A Decade Of Unmanned Aerial Systems In Irrigated Agriculture In The Western U.S., Jose L. Chavez, Alfonso F. Torres-Rua, Wayne E. Woldt, Huihui Zhang, Christopher Robertson, Gary W. Marek, Dong Wang, Derek M. Heeren, Saleh Taghvaeian, Christopher M. U. Neale

Department of Biological Systems Engineering: Papers and Publications

Several research institutes, laboratories, academic programs, and service companies around the United States have been developing programs to utilize small unmanned aerial systems (sUAS) as an instrument to improve the efficiency of in-field water and agronomical management. This article describes a decade of efforts on research and development efforts focused on UAS technologies and methodologies developed for irrigation management, including the evolution of aircraft and sensors in contrast to data from satellites. Federal Aviation Administration (FAA) regulations for UAS operation in agriculture have been synthesized along with proposed modifications to enhance UAS contributions to irrigated agriculture. Although it is feasible …


The Role Of Topography, Soil, And Remotely Sensed Vegetation Condition Towards Predicting Crop Yield, Trenton E. Franz, Sayli Pokal, Justin P. Gibson, Yuzhen Zhou, Hamed Gholizadeh, Fatima Amor Tenorio, Daran Rudnick, Derek M. Heeren, Matthew F. Mccabe, Matteo Ziliani, Zhenong Jin, Kaiyu Guan, Ming Pan, John Gates, Brian Wardlow Jan 2020

The Role Of Topography, Soil, And Remotely Sensed Vegetation Condition Towards Predicting Crop Yield, Trenton E. Franz, Sayli Pokal, Justin P. Gibson, Yuzhen Zhou, Hamed Gholizadeh, Fatima Amor Tenorio, Daran Rudnick, Derek M. Heeren, Matthew F. Mccabe, Matteo Ziliani, Zhenong Jin, Kaiyu Guan, Ming Pan, John Gates, Brian Wardlow

School of Natural Resources: Faculty Publications

Foreknowledge of the spatiotemporal drivers of crop yield would provide a valuable source of information to optimize on-farm inputs and maximize profitability. In recent years, an abundance of spatial data providing information on soils, topography, and vegetation condition have become available from both proximal and remote sensing platforms. Given the wide range of data costs (between USD $0−50/ha), it is important to understand where often limited financial resources should be directed to optimize field production. Two key questions arise. First, will these data actually aid in better fine-resolution yield prediction to help optimize crop management and farm economics? Second, what …