Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 84

Full-Text Articles in Life Sciences

Rna Virus-Mediated Changes In Organismal Oxygen Consumption Rate In Young And Old Drosophila Melanogaster Males, Eli Hagedorn, Dean Bunnell, Beate Henschel, Daniel Smith Jr, Stephanie Dickinson, Andrew Brown, Maria De Luca, Ashley Turner, Stanislava Chtarbanova Mar 2023

Rna Virus-Mediated Changes In Organismal Oxygen Consumption Rate In Young And Old Drosophila Melanogaster Males, Eli Hagedorn, Dean Bunnell, Beate Henschel, Daniel Smith Jr, Stephanie Dickinson, Andrew Brown, Maria De Luca, Ashley Turner, Stanislava Chtarbanova

Research, Publications & Creative Work

Aging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication. Virus-induced metabolic reprogramming could impact infection outcomes, however, how this is affected by aging and impacts organismal survival remains poorly understood. RNA virus infection of Drosophila melanogaster with Flock House virus (FHV) is an effective model to study antiviral responses with age, where older flies die faster than younger flies due …


Editorial: New Frontiers In The Application Of Stable Isotopes To Ecological And Ecophysiological Research, Keith A. Hobson, John P. Whiteman, Seth D. Newsome Jan 2023

Editorial: New Frontiers In The Application Of Stable Isotopes To Ecological And Ecophysiological Research, Keith A. Hobson, John P. Whiteman, Seth D. Newsome

Biological Sciences Faculty Publications

No abstract provided.


Glycolic Acid Utilization In Two Species Of Marine Bacteria, Erik S. Timsak Aug 2019

Glycolic Acid Utilization In Two Species Of Marine Bacteria, Erik S. Timsak

STAR Program Research Presentations

Interactions between bacteria and phytoplankton are crucial for the cycling of organic matter in marine environments. Around 50% of organic carbon taken up by marine bacteria is converted into inorganic carbon. The uptake of organic carbon by marine bacteria exuded from phytoplankton is a key factor in regulating the marine carbon cycle. One such molecule that is exuded by phytoplankton and then uptaken by marine bacteria is called glycolate - the anion of glycolic acid, a two caron molecule. Glycolate is exuded by phytoplankton during photorespiration and 10-50% of dissolved organic carbon in marine environments is comprised of glycolate. Additionally, …


A Broad Spectrum Racemase In Pseudomonas Putida Kt2440 Plays A Key Role In Amino Acid Catabolism, Atanas D. Radkov, Luke A. Moe Jun 2018

A Broad Spectrum Racemase In Pseudomonas Putida Kt2440 Plays A Key Role In Amino Acid Catabolism, Atanas D. Radkov, Luke A. Moe

Plant and Soil Sciences Faculty Publications

The broad-spectrum amino acid racemase (Alr) of Pseudomonas putida KT2440 preferentially interconverts the L- and D-stereoisomers of Lys and Arg. Despite conservation of broad-spectrum racemases among bacteria, little is known regarding their physiological role. Here we explore potential functional roles for Alr in P. putida KT2440. We demonstrate through cellular fractionation that Alr enzymatic activity is found in the periplasm, consistent with its putative periplasm targeting sequence. Specific activity of Alr is highest during exponential growth, and this activity corresponds with an increased accumulation of D-Lys in the growth medium. An alr gene knockout strain (Δalr) was generated …


The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee May 2018

The Effects Of Inulin And Galactooligosaccharides On The Production Of Reuterin By Lactobacillus Reuteri, Micah Forshee

Honors Program Projects

The microbiome is a dynamic community that can positively and negatively influence host health. Lactobacillus reuteri is a probiotic that has received much attention for its ability to inhibit pathogens such as Salmonella Typhimurium, Escherichia coli, and Clostridium difficile. It does so by its unique ability to metabolize glycerol into the antimicrobial compound 3-HPA, which is commonly referred to as reuterin. The ability to secrete reuterin is dependent not only on glycerol availability but also the concentration of glucose. In fact, there appears to be a “goldilocks” ratio between glucose and glycerol as either too much or too …


Is There A Link Between Aging And Microbiome Diversity In Exceptional Mammalian Longevity?, Graham M. Hughes, John Leech, Sebastien J. Puechmaille, Jose V. Lopez, Emma C. Teeling Jan 2018

Is There A Link Between Aging And Microbiome Diversity In Exceptional Mammalian Longevity?, Graham M. Hughes, John Leech, Sebastien J. Puechmaille, Jose V. Lopez, Emma C. Teeling

Biology Faculty Articles

A changing microbiome has been linked to biological aging in mice and humans, suggesting a possible role of gut flora in pathogenic aging phenotypes. Many bat species have exceptional longevity given their body size and some can live up to ten times longer than expected with little signs of aging. This study explores the anal microbiome of the exceptionally long-lived Myotis myotis bat, investigating bacterial composition in both adult and juvenile bats to determine if the microbiome changes with age in a wild, long-lived non-model organism, using non-lethal sampling. The anal microbiome was sequenced using metabarcoding in more than 50 …


Evolutionary Enhancement Of Zika Virus Infectivity In Aedes Aegypti Mosquitoes, Yang Liu, Jianying Liu, Senyan Du, Cheng-Feng Qin, Penghua Wang, Pei-Yong Shi, Gong Cheng May 2017

Evolutionary Enhancement Of Zika Virus Infectivity In Aedes Aegypti Mosquitoes, Yang Liu, Jianying Liu, Senyan Du, Cheng-Feng Qin, Penghua Wang, Pei-Yong Shi, Gong Cheng

NYMC Faculty Publications

Zika virus (ZIKV) remained obscure until the recent explosive outbreaks in French Polynesia (2013-2014) and South America (2015-2016). Phylogenetic studies have shown that ZIKV has evolved into African and Asian lineages. The Asian lineage of ZIKV was responsible for the recent epidemics in the Americas. However, the underlying mechanisms through which ZIKV rapidly and explosively spread from Asia to the Americas are unclear. Non-structural protein 1 (NS1) facilitates flavivirus acquisition by mosquitoes from an infected mammalian host and subsequently enhances viral prevalence in mosquitoes. Here we show that NS1 antigenaemia determines ZIKV infectivity in its mosquito vector Aedes aegypti, which …


Draft Nuclear Genome Sequence Of The Liquid Hydrocarbon–Accumulating Green Microalga Botryococcus Braunii Race B (Showa), Daniel R. Browne, Jerry Jenkins, Jeremy Schmutz, Shengqiang Shu, Kerrie Barry, Jane Grimwood, Jennifer Chiniquy, Aditi Sharma, Thomas Daniel Niehaus, Taylor L. Weiss, Andrew T. Koppisch, David T. Fox, Suraj Dhungana, Shigeru Okada, Joe Chappell, Timothy P. Devarenne Apr 2017

Draft Nuclear Genome Sequence Of The Liquid Hydrocarbon–Accumulating Green Microalga Botryococcus Braunii Race B (Showa), Daniel R. Browne, Jerry Jenkins, Jeremy Schmutz, Shengqiang Shu, Kerrie Barry, Jane Grimwood, Jennifer Chiniquy, Aditi Sharma, Thomas Daniel Niehaus, Taylor L. Weiss, Andrew T. Koppisch, David T. Fox, Suraj Dhungana, Shigeru Okada, Joe Chappell, Timothy P. Devarenne

Plant and Soil Sciences Faculty Publications

Botryococcus braunii has long been known as a prodigious producer of liquid hydrocarbon oils that can be converted into combustion engine fuels. This draft genome for the B race of B. braunii will allow researchers to unravel important hydrocarbon biosynthetic pathways and identify possible regulatory networks controlling this unusual metabolism.


Identification And Analysis Of Bacterial Genomic Metabolic Signatures, Nathaniel Bowerman, Nathan L. Tintle, Matthew Dejongh, Aaron A. Best Jan 2017

Identification And Analysis Of Bacterial Genomic Metabolic Signatures, Nathaniel Bowerman, Nathan L. Tintle, Matthew Dejongh, Aaron A. Best

Faculty Work Comprehensive List

With continued rapid growth in the number and quality of fully sequenced and accurately annotated bacterial genomes, we have unprecedented opportunities to understand metabolic diversity. We selected 101 diverse and representative completely sequenced bacteria and implemented a manual curation effort to identify 846 unique metabolic variants present in these bacteria. The presence or absence of these variants act as a metabolic signature for each of the bacteria, which can then be used to understand similarities and differences between and across bacterial groups. We propose a novel and robust method of summarizing metabolic diversity using metabolic signatures and use this method …


Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke Nov 2016

Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke

FIU Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative, metabolically versatile, opportunistic pathogen that exhibits a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability is in part mediated by two-component systems (TCS) that play a crucial role in regulating virulence mechanisms, metabolism and antibiotic resistance. Our sequence analysis of the P. aeruginosa PAO1 genome revealed the presence of two open reading frames, mifS and mifR, which encodes putative TCS proteins, a histidine sensor kinase MifS and a response regulator MifR, respectively. This two-gene operon was found immediately upstream of the poxAB operon, where poxB encodes …


The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader May 2016

The Effect Of Transformed Escherichia Coli On The Mouse Intestine Microbiome: The Microbial Metabolic Enhancement Hypothesis, Bryar P. Kader

Senior Honors Theses

Metabolic disorders affect around thirty-four percent of the population in the United States. Among these disorders is lactose intolerance, which results from diminished production of the human lactase enzyme. This disorder and others like it are genetically determined and cannot be cured. However, the use of transformed bacteria implanted in the colon may provide a means by which the faulty pathway can be bypassed. To test whether transformed bacteria have the capability to aid in the digestion of normally indigestible compounds, a transformed strain of Escherichia coli overexpressing the beta-galactosidase enzyme encoded by the lacZ gene was colonized in the …


The Transcription Factors Adr1 Or Cat8 Are Required For Rtg Pathway Activation And Evasion From Yeast Acetic Acid-Induced Programmed Cell Death In Raffinose, Zhengchang Liu, Luna Laera, Nicoletta Guaragnella, Maša Ždralević, Domenico Marzulli, Sergio Giannattasio Feb 2016

The Transcription Factors Adr1 Or Cat8 Are Required For Rtg Pathway Activation And Evasion From Yeast Acetic Acid-Induced Programmed Cell Death In Raffinose, Zhengchang Liu, Luna Laera, Nicoletta Guaragnella, Maša Ždralević, Domenico Marzulli, Sergio Giannattasio

Biological Sciences Faculty Publications

Yeast Saccharomyces cerevisiae grown on glucose undergoes programmed cell death (PCD) induced by acetic acid (AA-PCD), but evades PCD when grown in raffinose. This is due to concomitant relief of carbon catabolite repression (CCR) and activation of mitochondrial retrograde signaling, a mitochondria-to-nucleus communication pathway causing up-regulation of various nuclear target genes, such as CIT2, encoding peroxisomal citrate synthase, dependent on the positive regulator RTG2 in response to mitochondrial dysfunction. CCR down-regulates genes mainly involved in mitochondrial respiratory metabolism. In this work, we investigated the relationships between the RTG and CCR pathways in the modulation of AA-PCD sensitivity under glucose repression …


Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib Aug 2015

Role Of The Dna Sensor Sting In Protection From Lethal Infection Following Corneal And Intracerebral Challenge With Herpes Simplex Virus 1, Zachary M. Parker, Aisling A. Murphy, David. A. Leib

Dartmouth Scholarship

STING is a protein in the cytosolic DNA and cyclic dinucleotide sensor pathway that is critical for the initiation of innate responses to infection by various pathogens. Consistent with this, herpes simplex virus 1 (HSV-1) causes invariable and rapid lethality in STING-deficient (STING(-/-)) mice following intravenous (i.v.) infection. In this study, using real-time bioluminescence imaging and virological assays, as expected, we demonstrated that STING(-/-) mice support greater replication and spread in ocular tissues and the nervous system. In contrast, they did not succumb to challenge via the corneal route even with high titers of a virus that was routinely lethal …


Deletion Of Nfnab In Thermoanaerobacterium Saccharolyticum And Its Effect On Metabolism, Jonathan Lo, Tianyong Zheng, Daniel G. Olson, Natalie Ruppertsberger, Shital Tripathi, Adam Guss, Lee Lynd Jun 2015

Deletion Of Nfnab In Thermoanaerobacterium Saccharolyticum And Its Effect On Metabolism, Jonathan Lo, Tianyong Zheng, Daniel G. Olson, Natalie Ruppertsberger, Shital Tripathi, Adam Guss, Lee Lynd

Dartmouth Scholarship

NfnAB catalyzes the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP+. The NfnAB complex has been hypothesized to be the main enzyme for ferredoxin oxidization in strains of Thermoanaerobacterium saccharolyticum engineered for increased ethanol production. NfnAB complex activity was detectable in crude cell extracts of T. saccharolyticum. Activity was also detected using activity staining of native PAGE gels. The nfnAB gene was deleted in different strains of T. saccharolyticum to determine its effect on end product formation. In wild-type T. saccharolyticum, deletion of nfnAB resulted in a 46% increase in H2 formation but …


Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd May 2015

Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd

Dartmouth Scholarship

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. …


Mcl1 Enhances The Survival Of Cd8+ Memory T Cells After Viral Infection, Jingang Gui, Zhuting Hu, Ching-Yi Tsai, Tian Ma, Yan Song, Amanda Morales, Li-Hao Huang, Ethan Dmitrovsky, Ruth Craig, Edward Usherwood Jan 2015

Mcl1 Enhances The Survival Of Cd8+ Memory T Cells After Viral Infection, Jingang Gui, Zhuting Hu, Ching-Yi Tsai, Tian Ma, Yan Song, Amanda Morales, Li-Hao Huang, Ethan Dmitrovsky, Ruth Craig, Edward Usherwood

Dartmouth Scholarship

Viral infection results in the generation of massive numbers of activated effector CD8+ T cells that recognize viral components. Most of these are short-lived effector T cells (SLECs) that die after clearance of the virus. However, a small proportion of this population survives and forms antigen-specific memory precursor effector cells (MPECs), which ultimately develop into memory cells. These can participate in a recall response upon reexposure to antigen even at protracted times postinfection. Here, antiapoptotic myeloid cell leukemia 1 (MCL1) was found to prolong survival upon T cell stimulation, and mice expressing human MCL1 as a transgene exhibited a skewing …


The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd Oct 2014

The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

BackgroundClostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. .


Host Species Restriction Of Middle East Respiratory Syndrome Coronavirus Through Its Receptor, Dipeptidyl Peptidase 4, Neeltje Van Doremalen, Kerri L. Miazgowicz, Shauna Milne-Price, Trenton Bushmaker, Shelly Robertson, Dana Scott, Joerg Kinne, Jason S. Mclellan Jun 2014

Host Species Restriction Of Middle East Respiratory Syndrome Coronavirus Through Its Receptor, Dipeptidyl Peptidase 4, Neeltje Van Doremalen, Kerri L. Miazgowicz, Shauna Milne-Price, Trenton Bushmaker, Shelly Robertson, Dana Scott, Joerg Kinne, Jason S. Mclellan

Dartmouth Scholarship

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and …


Structural Features Of The Pseudomonas Fluorescens Biofilm Adhesin Lapa Required For Lapg-Dependent Cleavage, Biofilm Formation, And Cell Surface Localization, Chelsea D. Boyd, T. Jarrod Smith, Sofiane El-Kirat-Chatel, Peter D. Newell, Yves F. Dufrêne, George A. O'Toole May 2014

Structural Features Of The Pseudomonas Fluorescens Biofilm Adhesin Lapa Required For Lapg-Dependent Cleavage, Biofilm Formation, And Cell Surface Localization, Chelsea D. Boyd, T. Jarrod Smith, Sofiane El-Kirat-Chatel, Peter D. Newell, Yves F. Dufrêne, George A. O'Toole

Dartmouth Scholarship

The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for …


Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole Mar 2014

Deletion Mutant Library For Investigation Of Functional Outputs Of Cyclic Diguanylate Metabolism In Pseudomonas Aeruginosa Pa14, Dae-Gon Ha, Megan E. Richman, George A. O'Toole

Dartmouth Scholarship

We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library.


The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation Through Direct Control Of N-Cadherin, Tadahiro Nagaoka, Riuko Ohashi, Ayumu Inutsuka, Seiko Sakai, Nobuyoshi Fujisawa, Minesuke Yokoyama, Yina H. Huang, Michihiro Igarashi, Masashi Kishi Mar 2014

The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation Through Direct Control Of N-Cadherin, Tadahiro Nagaoka, Riuko Ohashi, Ayumu Inutsuka, Seiko Sakai, Nobuyoshi Fujisawa, Minesuke Yokoyama, Yina H. Huang, Michihiro Igarashi, Masashi Kishi

Dartmouth Scholarship

Although regulators of the Wnt/planar cell polarity (PCP) pathway are widely expressed in vertebrate nervous systems, their roles at synapses are unknown. Here, we show that Vangl2 is a postsynaptic factor crucial for synaptogenesis and that it coprecipitates with N-cadherin and PSD-95 from synapse-rich brain extracts. Vangl2 directly binds N-cadherin and enhances its internalization in a Rab5-dependent manner. This physical and functional interaction is suppressed by β-catenin, which binds the same intracellular region of N-cadherin as Vangl2. In hippocampal neurons expressing reduced Vangl2 levels, dendritic spine formation as well as synaptic marker clustering is significantly impaired. Furthermore, Prickle2, another postsynaptic …


Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold Feb 2014

Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold

Dartmouth Scholarship

Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can …


Divergent Antibody Subclass And Specificity Profiles But Not Protective Hla-B Alleles Are Associated With Variable Antibody Effector Function Among Hiv-1 Controllers, Jennifer I. Lai, Anna F. Licht, Anne-Sophie Dugast, Todd Suscovich, Ickwon Choi, Chris Bailey-Kellogg, Galit Alter, Margaret E. Ackerman Dec 2013

Divergent Antibody Subclass And Specificity Profiles But Not Protective Hla-B Alleles Are Associated With Variable Antibody Effector Function Among Hiv-1 Controllers, Jennifer I. Lai, Anna F. Licht, Anne-Sophie Dugast, Todd Suscovich, Ickwon Choi, Chris Bailey-Kellogg, Galit Alter, Margaret E. Ackerman

Dartmouth Scholarship

Understanding the coordination between humoral and cellular immune responses may be the key to developing protective vaccines, and because genetic studies of long-term HIV-1 nonprogressors have associated specific HLA-B alleles with spontaneous control of viral replication, this subject group presents an opportunity to investigate relationships between arms of the adaptive immune system. Given evidence suggesting that cellular immunity may play a role in viral suppression, we sought to determine whether and how the humoral immune response might vary among controllers. Significantly, Fc-mediated antibody effector functions have likewise been associated with durable viral control. In this study, we compared the effector …


Role Of The Cipa Scaffoldin Protein In Cellulose Solubilization, As Determined By Targeted Gene Deletion And Complementation In Clostridium Thermocellum, Daniel G. Olson, Richard J. Giannone, Robert L. Hettich, Lee R. Lynd Nov 2013

Role Of The Cipa Scaffoldin Protein In Cellulose Solubilization, As Determined By Targeted Gene Deletion And Complementation In Clostridium Thermocellum, Daniel G. Olson, Richard J. Giannone, Robert L. Hettich, Lee R. Lynd

Dartmouth Scholarship

The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In …


Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd Feb 2013

Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocellum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did …


Candida Albicans Induces Arginine Biosynthetic Genes In Response To Host-Derived Reactive Oxygen Species, Claudia Jimenez-Lopez, John R. Collette, Kimberly M. Brothers, Kelly M. Shepardson, Robert A. Kramer Jan 2013

Candida Albicans Induces Arginine Biosynthetic Genes In Response To Host-Derived Reactive Oxygen Species, Claudia Jimenez-Lopez, John R. Collette, Kimberly M. Brothers, Kelly M. Shepardson, Robert A. Kramer

Dartmouth Scholarship

The interaction of Candida albicans with phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages. Using single-cell reporters, we showed here that arginine biosynthetic genes are induced specifically in phagocytosed cells. This induction is …


Inhibition Of The Host Translation Shutoff Response By Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy, Kerstin Radtke, Luc English, Christiane Rondeau, David Leib Jan 2013

Inhibition Of The Host Translation Shutoff Response By Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy, Kerstin Radtke, Luc English, Christiane Rondeau, David Leib

Dartmouth Scholarship

Macroautophagy is a cellular pathway that degrades intracellular pathogens and contributes to antigen presentation. Herpes simplex virus 1 (HSV-1) infection triggers both macroautophagy and an additional form of autophagy that uses the nuclear envelope as a source of membrane. The present study constitutes the first in-depth analysis of nuclear envelope-derived autophagy (NEDA). We established LC3a as a marker that allowed us to distinguish between NEDA and macroautophagy in both immunofluorescence and flow cytometry. NEDA was observed in many different cell types, indicating that it is a general response to HSV-1 infection. This autophagic pathway is known to depend on the …


Form And Function Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon Wolfaardt, Grant Allen, Steven N. Liss, Lee R. Lynd Oct 2012

Form And Function Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon Wolfaardt, Grant Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

The importance of bacterial adherence has been acknowledged in microbial lignocellulose conversion studies; however, few reports have described the function and structure of biofilms supported by cellulosic substrates. We investigated the organization, dynamic formation, and carbon flow associated with biofilms of the obligately anaerobic cellulolytic bacterium Clostridium thermocellum 27405. Using noninvasive, in situ fluorescence imaging, we showed biofilms capable of near complete substrate conversion with a characteristic monolayered cell structure without an extracellular polymeric matrix typically seen in biofilms. Cell division at the interface and terminal endospores appeared throughout all stages of biofilm growth. Using continuous-flow reactors with a rate …


Farnesol And Cyclic Amp Signaling Effects On The Hypha-To-Yeast Transition In Candida Albicans, Allia K. Lindsay, Aurélie Deveau, Amy E. Piispanen, Deborah A. Hogan Aug 2012

Farnesol And Cyclic Amp Signaling Effects On The Hypha-To-Yeast Transition In Candida Albicans, Allia K. Lindsay, Aurélie Deveau, Amy E. Piispanen, Deborah A. Hogan

Dartmouth Scholarship

Candida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced by C. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol did not induce the hypha-to-yeast transition in mutants …


Minor Pilins Of The Type Iv Pilus System Participate In The Negative Regulation Of Swarming Motility, S L. Kuchma, E. F. Griffin, G. A. O'Toole Aug 2012

Minor Pilins Of The Type Iv Pilus System Participate In The Negative Regulation Of Swarming Motility, S L. Kuchma, E. F. Griffin, G. A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa exhibits distinct surface-associated behaviors, including biofilm formation, flagellum-mediated swarming motility, and type IV pilus-driven twitching. Here, we report a role for the minor pilins, PilW and PilX, components of the type IV pilus assembly machinery, in the repression of swarming motility. Mutating either the pilW or pilX gene alleviates the inhibition of swarming motility observed for strains with elevated levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP) due to loss of BifA, a c-di-GMP-degrading phosphodiesterase. Blocking PilD peptidase-mediated processing of PilW and PilX renders the unprocessed proteins defective for pilus assembly but still functional in c-di-GMP-mediated swarming …