Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

A Combinatorial 5-Htr Expression Pattern Within The Ventral Projection Neurons Of The D. Melanogaster Olfactory Circuit., Mohd Freezely Ezzani Bin Mazri Jan 2022

A Combinatorial 5-Htr Expression Pattern Within The Ventral Projection Neurons Of The D. Melanogaster Olfactory Circuit., Mohd Freezely Ezzani Bin Mazri

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation allows neurons within a circuit to respond to stimuli from the environment according to the correct ecological value, context, and internal state of the animal. Serotonin (5-HT) is a neuromodulator that can generate different outcomes based on its target’s serotonin receptor (5-HTR) expression by affecting secondary messenger cascades. Within the Drosophila olfactory system, ventral projections neurons (vPN) express all five insect 5-HTR that project into two olfactory processing regions, the antennal lobe (AL) and the lateral horn (LH). The significance of this 5-HTR expression is unknown. In this study, I theorized the patterns of 5-HTR expression of vPNs. I …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


Describing A Putative Corollary Discharge Circuit In Drosophila, Kaitlyn Nicole Boone Jan 2021

Describing A Putative Corollary Discharge Circuit In Drosophila, Kaitlyn Nicole Boone

Graduate Theses, Dissertations, and Problem Reports

Corollary discharge (CD) circuits provide critical information about movement and behavior to provide context to sensory processing. However, to date, there has not been a comprehensive study of CD circuits at a single-cell level. In this thesis, I aimed to resolve the connectivity of ascending histaminergic neurons, consisting of two pairs, the mesothoracic pair (MsAHNs) and metathoracic pair (MtAHNs) at a single-cell level and characterize contexts of activation. Using transgenic techniques, connectomics and transcriptomics, we identify neural populations receiving input from the AHNs and neural populations with significant output to the AHNs. We explored where the AHNs predominantly receive synaptic …


The Wiring Logic Of Identified Serotonergic Neurons Across Olfactory Networks In Drosophila, Kaylynn E. Coates Jan 2020

The Wiring Logic Of Identified Serotonergic Neurons Across Olfactory Networks In Drosophila, Kaylynn E. Coates

Graduate Theses, Dissertations, and Problem Reports

Serotonin is a ubiquitous neuromodulator that confers flexibility in networks to modulate a wide array of behavioral and physiological processes. However, due to the complexity and heterogeneity of serotonergic systems, it has been challenging to determine the patterns of connectivity as well as the physiological contexts that influence individual serotonin neurons. In this dissertation, I use two serotonergic neurons which innervate the Drosophila olfactory system, the CSDns, as a model to explore these broad questions comprehensively using anatomical approaches. I first show that the CSDns have distinct connectivity relationships with populations of antennal lobe principal olfactory neurons and that their …