Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Plant and Soil Sciences Faculty Publications

2014

Genes, Plant

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Integration Of Developmental And Environmental Signals Via A Polyadenylation Factor In Arabidopsis, Man Liu, Ruqiang Xu, Carrie Merrill, Liwei Hong, Carol Von Lanken, Arthur G. Hunt, Qingshun Q. Li Dec 2014

Integration Of Developmental And Environmental Signals Via A Polyadenylation Factor In Arabidopsis, Man Liu, Ruqiang Xu, Carrie Merrill, Liwei Hong, Carol Von Lanken, Arthur G. Hunt, Qingshun Q. Li

Plant and Soil Sciences Faculty Publications

The ability to integrate environmental and developmental signals with physiological responses is critical for plant survival. How this integration is done, particularly through posttranscriptional control of gene expression, is poorly understood. Previously, it was found that the 30 kD subunit of Arabidopsis cleavage and polyadenylation specificity factor (AtCPSF30) is a calmodulin-regulated RNA-binding protein. Here we demonstrated that mutant plants (oxt6) deficient in AtCPSF30 possess a novel range of phenotypes--reduced fertility, reduced lateral root formation, and altered sensitivities to oxidative stress and a number of plant hormones (auxin, cytokinin, gibberellic acid, and ACC). While the wild-type AtCPSF30 (C30G) was …


Induced Transcriptional Profiling Of Phenylpropanoid Pathway Genes Increased Flavonoid And Lignin Content In Arabidopsis Leaves In Response To Microbial Products, Mohammad Babar Ali, David H. Mcnear Apr 2014

Induced Transcriptional Profiling Of Phenylpropanoid Pathway Genes Increased Flavonoid And Lignin Content In Arabidopsis Leaves In Response To Microbial Products, Mohammad Babar Ali, David H. Mcnear

Plant and Soil Sciences Faculty Publications

BACKGROUND: The production and use of biologically derived soil additives is one of the fastest growing sectors of the fertilizer industry. These products have been shown to improve crop yields while at the same time reducing fertilizer inputs to and nutrient loss from cropland. The mechanisms driving the changes in primary productivity and soil processes are poorly understood and little is known about changes in secondary productivity associated with the use of microbial products. Here we investigate secondary metabolic responses to a biologically derived soil additive by monitoring changes in the phenlypropanoid (PP) pathway in Arabidopsis thaliana.

RESULTS: This study …