Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil Apr 2015

Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil

Senior Theses and Projects

Segmentation is a key feature of arthropod diversity and evolution. In the standard model for arthropod development, Drosophila melanogaster, segments develop simultaneously by a progressive subdivision of the embryo. By contrast, most arthropods add segments sequentially from a posterior region called the growth zone and in a manner similar to vertebrates.

Recent work, mainly focused on insects, suggests that Notch signaling might play a role in arthropods that segment sequentially. These studies document a potential regulatory similarity between sequentially segmenting arthropods and vertebrates. In vertebrates, somite formation involves a molecular oscillator that functions as a pacemaker, driving periodic expression …


The Effect Of Serrate Transmembrane Domain Substitution On Notch Signaling, James Z. Curlin Apr 2015

The Effect Of Serrate Transmembrane Domain Substitution On Notch Signaling, James Z. Curlin

Senior Theses and Projects

The Notch signaling pathway is a crucial means by which organisms differentiate cells during development. Notch is regulated primarily through the interaction of a Notch receptor protein and a ligand protein, in two specific ways. Cis-inhibition occurs when both a ligand and receptor are present on the same cellular membrane. This results in the cis-ligand binding to the receptor and preventing the ligand on an adjacent cell from binding and activating the receptor. Alternatively, trans-activation occurs when the ligand and receptor are on adjacent cells, and results in the activation of the Notch pathway. Both the receptor …