Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Life Sciences

Interview With Celia Schiffer, Celia Schiffer Jan 2015

Interview With Celia Schiffer, Celia Schiffer

Celia A. Schiffer

Celia Schiffer, a Professor in Biochemistry and Molecular Pharmacology; a former Director of UMass Center for AIDS Research; and a Founder and Co-Director for the Institute for Drug Resistance (University of Massachusetts Medical School, MA, USA). Schiffer has an undergraduate degree in physics from the University of Chicago, with a PhD in biophysics from University of California, San Francisco (CA, USA). She was a postdoctoral associate first at the ETH in Zurich and then at Genentech in San Francisco. Schiffer has published more than 100 peer reviewed journal articles. Her laboratory primarily uses structural biology, biophysical and chemistry techniques to …


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against …


Extreme Entropy-Enthalpy Compensation In A Drug-Resistant Variant Of Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Rajintha Bandaranayake, Madhavi Nalam, Ellen Nalivaika, Aysegul Ozen, Turkan Haliloglu, Nese Yilmaz, Celia Schiffer Oct 2012

Extreme Entropy-Enthalpy Compensation In A Drug-Resistant Variant Of Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Rajintha Bandaranayake, Madhavi Nalam, Ellen Nalivaika, Aysegul Ozen, Turkan Haliloglu, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

The development of HIV-1 protease inhibitors has been the historic paradigm of rational structure-based drug design, where structural and thermodynamic analyses have assisted in the discovery of novel inhibitors. While the total enthalpy and entropy change upon binding determine the affinity, often the thermodynamics are considered in terms of inhibitor properties only. In the current study, profound changes are observed in the binding thermodynamics of a drug-resistant variant compared to wild-type HIV-1 protease, irrespective of the inhibitor bound. This variant (Flap+) has a combination of flap and active site mutations and exhibits extremely large entropy-enthalpy compensation compared to wild-type protease, …


Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer Oct 2012

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical for rational drug design. Computational methods can provide more details about inhibitor-protease binding than crystallography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This information can contribute to the rational design of new HIV-1 protease inhibitors.


Design, Synthesis, And Biological And Structural Evaluations Of Novel Hiv-1 Protease Inhibitors To Combat Drug Resistance, Maloy Parai, David Huggins, Hong Cao, Madhavi Nalam, Akbar Ali, Celia Schiffer, Bruce Tidor, Tariq Rana Oct 2012

Design, Synthesis, And Biological And Structural Evaluations Of Novel Hiv-1 Protease Inhibitors To Combat Drug Resistance, Maloy Parai, David Huggins, Hong Cao, Madhavi Nalam, Akbar Ali, Celia Schiffer, Bruce Tidor, Tariq Rana

Celia A. Schiffer

A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1 protease and three multidrug resistant (MDR) variants. In particular, inhibitors containing the 2,2-dichloroacetamide, pyrrolidinone, imidazolidinone, and oxazolidinone moieties at P2 are the most potent with K(i) values in the picomolar range. Several new PIs exhibit nanomolar antiviral potencies against patient-derived wild-type viruses from HIV-1 clades A, B, and C …


Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer Nov 2011

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson Nov 2011

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson

Celia A. Schiffer

Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The …


Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana Nov 2011

Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana

Celia A. Schiffer

Here, we describe the design, synthesis, and biological evaluation of novel HIV-1 protease inhibitors incorporating N-phenyloxazolidinone-5-carboxamides into the (hydroxyethylamino)sulfonamide scaffold as P2 ligands. Series of inhibitors with variations at the P2 phenyloxazolidinone and the P2' phenylsulfonamide moieties were synthesized. Compounds with the (S)-enantiomer of substituted phenyloxazolidinones at P2 show highly potent inhibitory activities against HIV-1 protease. The inhibitors possessing 3-acetyl, 4-acetyl, and 3-trifluoromethyl groups at the phenyl ring of the oxazolidinone fragment are the most potent in each series, with K(i) values in the low picomolar (pM) range. The electron-donating groups 4-methoxy and 1,3-dioxolane are preferred at P2' phenyl ring, …


Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer Nov 2011

Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer

Celia A. Schiffer

We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu Nov 2011

Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

The structural fluctuations of HIV-1 protease in interaction with its substrates versus inhibitors were analyzed using the anisotropic network model. The directions of fluctuations in the most cooperative functional modes differ mainly around the dynamically key regions, i.e., the hinge axes, which appear to be more flexible in substrate complexes. The flexibility of HIV-1 protease is likely optimized for the substrates' turnover, resulting in substrate complexes being dynamic. In contrast, in an inhibitor complex, the inhibitor should bind and lock down to inactivate the active site. Protease and ligands are not independent. Substrates are also more flexible than inhibitors and …


Crystal Structure Of Lysine Sulfonamide Inhibitor Reveals The Displacement Of The Conserved Flap Water Molecule In Human Immunodeficiency Virus Type 1 Protease, Madhavi Nalam, Anik Peeters, Tim Jonckers, Inge Dierynck, Celia Schiffer Nov 2011

Crystal Structure Of Lysine Sulfonamide Inhibitor Reveals The Displacement Of The Conserved Flap Water Molecule In Human Immunodeficiency Virus Type 1 Protease, Madhavi Nalam, Anik Peeters, Tim Jonckers, Inge Dierynck, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease has been continuously evolving and developing resistance to all of the protease inhibitors. This requires the development of new inhibitors that bind to the protease in a novel fashion. Most of the inhibitors that are on the market are peptidomimetics, where a conserved water molecule mediates hydrogen bonding interactions between the inhibitors and the flaps of the protease. Recently a new class of inhibitors, lysine sulfonamides, was developed to combat the resistant variants of HIV protease. Here we report the crystal structure of a lysine sulfonamide. This inhibitor binds to the active site …


Additivity In The Analysis And Design Of Hiv Protease Inhibitors, Robert Jorissen, G. S. Kiran Kumar Reddy, Akbar Ali, Michael Altman, Sripriya Chellappan, Saima Anjum, Bruce Tidor, Celia Schiffer, Tariq Rana, Michael Gilson Nov 2011

Additivity In The Analysis And Design Of Hiv Protease Inhibitors, Robert Jorissen, G. S. Kiran Kumar Reddy, Akbar Ali, Michael Altman, Sripriya Chellappan, Saima Anjum, Bruce Tidor, Celia Schiffer, Tariq Rana, Michael Gilson

Celia A. Schiffer

We explore the applicability of an additive treatment of substituent effects to the analysis and design of HIV protease inhibitors. Affinity data for a set of inhibitors with a common chemical framework were analyzed to provide estimates of the free energy contribution of each chemical substituent. These estimates were then used to design new inhibitors whose high affinities were confirmed by synthesis and experimental testing. Derivations of additive models by least-squares and ridge-regression methods were found to yield statistically similar results. The additivity approach was also compared with standard molecular descriptor-based QSAR; the latter was not found to provide superior …


The Challenge Of Developing Robust Drugs To Overcome Resistance, Amy Anderson, Michael Pollastri, Celia Schiffer, Norton Peet Nov 2011

The Challenge Of Developing Robust Drugs To Overcome Resistance, Amy Anderson, Michael Pollastri, Celia Schiffer, Norton Peet

Celia A. Schiffer

Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust drugs and the selection of resilient targets can lead to successful strategies for combating resistance.


Design Of Hiv-1 Protease Inhibitors Active On Multidrug-Resistant Virus, Dominique Surleraux, Herman De Kock, Wim Verschueren, Geert Pille, Louis Maes, Anik Peeters, Sandrine Vendeville, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck Nov 2011

Design Of Hiv-1 Protease Inhibitors Active On Multidrug-Resistant Virus, Dominique Surleraux, Herman De Kock, Wim Verschueren, Geert Pille, Louis Maes, Anik Peeters, Sandrine Vendeville, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck

Celia A. Schiffer

On the basis of structural data gathered during our ongoing HIV-1 protease inhibitors program, from which our clinical candidate TMC114 9 was selected, we have discovered new series of fused heteroaromatic sulfonamides. The further extension into the P2' region was aimed at identifying new classes of compounds with an improved broad spectrum activity and acceptable pharmacokinetic properties. Several of these compounds display an exceptional broad spectrum activity against a panel of highly cross-resistant mutants. Certain members of these series exhibit favorable pharmacokinetic profiles in rat and dog. Crystal structures and molecular modeling were used to rationalize the broad spectrum profile …


N88d Facilitates The Co-Occurrence Of D30n And L90m And The Development Of Multidrug Resistance In Hiv Type 1 Protease Following Nelfinavir Treatment Failure, Yumi Mitsuya, Mark Winters, W. Jeffrey Fessel, Soo-Yon Rhee, Leo Hurley, Michael Horberg, Celia Schiffer, Andrew Zolopa, Robert Shafer Nov 2011

N88d Facilitates The Co-Occurrence Of D30n And L90m And The Development Of Multidrug Resistance In Hiv Type 1 Protease Following Nelfinavir Treatment Failure, Yumi Mitsuya, Mark Winters, W. Jeffrey Fessel, Soo-Yon Rhee, Leo Hurley, Michael Horberg, Celia Schiffer, Andrew Zolopa, Robert Shafer

Celia A. Schiffer

Nelfinavir was once one of the most commonly used protease inhibitors (PIs). To investigate the genetic mechanisms of multidrug resistance in protease isolates with the primary nelfinavir resistance mutation D30N, we analyzed patterns of protease mutations in 582 viruses with D30N from 460 persons undergoing HIV-1 genotypic resistance testing at Stanford University Hospital from 1997 to 2005. Three patterns of mutational associations were identified. First, D30N was positively associated with N88D but negatively associated with N88S. Second, D30N and L90M were negatively associated except in the presence of N88D, which facilitated the co-occurrence of D30N and L90M. Third, D30N+N88D+L90M formed …


Tmc310911, A Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor, Shows In Vitro An Improved Resistance Profile And Higher Genetic Barrier To Resistance Compared With Current Protease Inhibitors, Inge Dierynck, Herwig Van Marck, Marcia Van Ginderen, Tim Jonckers, Madhavi Nalam, Celia Schiffer, Araz Raoof, Guenter Kraus, Gaston Picchio Nov 2011

Tmc310911, A Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor, Shows In Vitro An Improved Resistance Profile And Higher Genetic Barrier To Resistance Compared With Current Protease Inhibitors, Inge Dierynck, Herwig Van Marck, Marcia Van Ginderen, Tim Jonckers, Madhavi Nalam, Celia Schiffer, Araz Raoof, Guenter Kraus, Gaston Picchio

Celia A. Schiffer

TMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC(50)], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC(50), >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC(50) was


Design Of Mutation-Resistant Hiv Protease Inhibitors With The Substrate Envelope Hypothesis, Sripriya Chellappan, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Visvaldas Kairys, Miguel Fernandes, Michael Altman, Bruce Tidor, Tariq Rana, Celia Schiffer, Michael Gilson Nov 2011

Design Of Mutation-Resistant Hiv Protease Inhibitors With The Substrate Envelope Hypothesis, Sripriya Chellappan, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Visvaldas Kairys, Miguel Fernandes, Michael Altman, Bruce Tidor, Tariq Rana, Celia Schiffer, Michael Gilson

Celia A. Schiffer

There is a clinical need for HIV protease inhibitors that can evade resistance mutations. One possible approach to designing such inhibitors relies upon the crystallographic observation that the substrates of HIV protease occupy a rather constant region within the binding site. In particular, it has been hypothesized that inhibitors which lie within this region will tend to resist clinically relevant mutations. The present study offers the first prospective evaluation of this hypothesis, via computational design of inhibitors predicted to conform to the substrate envelope, followed by synthesis and evaluation against wild-type and mutant proteases, as well as structural studies of …


Computational Design And Experimental Study Of Tighter Binding Peptides To An Inactivated Mutant Of Hiv-1 Protease, Michael Altman, Ellen Nalivaika, Moses Prabu-Jeyabalan, Celia Schiffer, Bruce Tidor Nov 2011

Computational Design And Experimental Study Of Tighter Binding Peptides To An Inactivated Mutant Of Hiv-1 Protease, Michael Altman, Ellen Nalivaika, Moses Prabu-Jeyabalan, Celia Schiffer, Bruce Tidor

Celia A. Schiffer

Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable …


Design And Synthesis Of Hiv-1 Protease Inhibitors Incorporating Oxazolidinones As P2/P2' Ligands In Pseudosymmetric Dipeptide Isosteres, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Robin Nathans, Celia Schiffer, Tariq Rana Nov 2011

Design And Synthesis Of Hiv-1 Protease Inhibitors Incorporating Oxazolidinones As P2/P2' Ligands In Pseudosymmetric Dipeptide Isosteres, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Robin Nathans, Celia Schiffer, Tariq Rana

Celia A. Schiffer

A series of novel HIV-1 protease inhibitors based on two pseudosymmetric dipeptide isosteres have been synthesized and evaluated. The inhibitors were designed by incorporating N-phenyloxazolidinone-5-carboxamides into the hydroxyethylene and (hydroxyethyl)hydrazine dipeptide isosteres as P2 and P2' ligands. Compounds with (S)-phenyloxazolidinones attached at a position proximal to the central hydroxyl group showed low nM inhibitory activities against wild-type HIV-1 protease. Selected compounds were further evaluated for their inhibitory activities against a panel of multidrug-resistant protease variants and for their antiviral potencies in MT-4 cells. The crystal structures of lopinavir (LPV) and two new inhibitors containing phenyloxazolidinone-based ligands in complex with wild-type …


Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer Nov 2011

Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type …


Combating Susceptibility To Drug Resistance: Lessons From Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Combating Susceptibility To Drug Resistance: Lessons From Hiv-1 Protease, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

Drug resistance is a major obstacle in modern medicine. However, resistance is rarely considered in drug development and may inadvertently be facilitated, as many designed inhibitors contact residues that can mutate to confer resistance, without significantly impairing function. Contemporary drug design often ignores the detailed atomic basis for function and primarily focuses on disrupting the target's activity, which is necessary but not sufficient for developing a robust drug. In this study, we examine the impact of drug-resistant mutations in HIV-1 protease on substrate recognition and demonstrate that most primary active site mutations do not extensively contact substrates, but are critical …


Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer Nov 2011

Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

Darunavir (DRV) is a high affinity (4.5x10(-12) M, DeltaG = -15.2 kcal/mol) HIV-1 protease inhibitor. Two drug-resistant protease variants FLAP+ (L10I, G48V, I54V, V82A) and ACT (V82T, I84V) decrease the binding affinity with DRV by 1.0 kcal/mol and 1.6 kcal/mol respectively. In this study the absolute and relative binding free energies of DRV with wild-type protease, FLAP+ and ACT were calculated with MM-PB/GBSA and thermodynamic integration methods, respectively. Free energy decomposition elucidated that the mutations conferred resistance by distorting the active site of HIV-1 protease so that the residues that lost binding free energy were not limited to the sites …


Hiv-1 Protease Inhibitors From Inverse Design In The Substrate Envelope Exhibit Subnanomolar Binding To Drug-Resistant Variants, Michael Altman, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Michael Gilson, Celia Schiffer, Tariq Rana, Bruce Tidor Nov 2011

Hiv-1 Protease Inhibitors From Inverse Design In The Substrate Envelope Exhibit Subnanomolar Binding To Drug-Resistant Variants, Michael Altman, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Michael Gilson, Celia Schiffer, Tariq Rana, Bruce Tidor

Celia A. Schiffer

The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the …


Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer Nov 2011

Structural And Thermodynamic Basis For The Binding Of Tmc114, A Next-Generation Human Immunodeficiency Virus Type 1 Protease Inhibitor, Nancy King, Moses Prabu-Jeyabalan, Ellen Nalivaika, Piet Wigerinck, Marie-Pierre De Bethune, Celia Schiffer

Celia A. Schiffer

TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme …


The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01_AE (AE) strain is seen principally in Southeast Asia. AE protease differs by approximately 10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Hydrophobic Sliding: A Possible Mechanism For Drug Resistance In Human Immunodeficiency Virus Type 1 Protease, Jennifer Foulkes-Murzycki, Walter Scott, Celia Schiffer Nov 2011

Hydrophobic Sliding: A Possible Mechanism For Drug Resistance In Human Immunodeficiency Virus Type 1 Protease, Jennifer Foulkes-Murzycki, Walter Scott, Celia Schiffer

Celia A. Schiffer

Hydrophobic residues outside the active site of HIV-1 protease frequently mutate in patients undergoing protease inhibitor therapy; however, the mechanism by which these mutations confer drug resistance is not understood. From analysis of molecular dynamics simulations, 19 core hydrophobic residues appear to facilitate the conformational changes that occur in HIV-1 protease. The hydrophobic core residues slide by each other, exchanging one hydrophobic van der Waal contact for another, with little energy penalty, while maintaining many structurally important hydrogen bonds. Such hydrophobic sliding may represent a general mechanism by which proteins undergo conformational changes. Mutation of these residues in HIV-1 protease …


Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance, Madhavi Kolli, Eric Stawiski, Colombe Chappey, Celia Schiffer Nov 2011

Human Immunodeficiency Virus Type 1 Protease-Correlated Cleavage Site Mutations Enhance Inhibitor Resistance, Madhavi Kolli, Eric Stawiski, Colombe Chappey, Celia Schiffer

Celia A. Schiffer

Drug resistance is an important cause of antiretroviral therapy failure in human immunodeficiency virus (HIV)-infected patients. Mutations in the protease render the virus resistant to protease inhibitors (PIs). Gag cleavage sites also mutate, sometimes correlating with resistance mutations in the protease, but their contribution to resistance has not been systematically analyzed. The present study examines mutations in Gag cleavage sites that associate with protease mutations and the impact of these associations on drug susceptibilities. Significant associations were observed between mutations in the nucleocapsid-p1 (NC-p1) and p1-p6 cleavage sites and various PI resistance-associated mutations in the protease. Several patterns were frequently …


Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay Nov 2011

Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay

Celia A. Schiffer

Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type …