Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Pot1‐Independent Single‐Strand Telomeric Dna Binding Activities In Brassicaceae, Eugene V. Shakirov, Thomas D. Mcknight, Dorothy E. Shippen Nov 2019

Pot1‐Independent Single‐Strand Telomeric Dna Binding Activities In Brassicaceae, Eugene V. Shakirov, Thomas D. Mcknight, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single‐strand protrusion, termed the G‐overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1‐like proteins. Here we show that the single‐strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, …


Selaginella Moellendorffii Telomeres: Conserved And Unique Features In An Ancient Land Plant Lineage, Eugene V. Shakirov, Dorothy E. Shippen Oct 2019

Selaginella Moellendorffii Telomeres: Conserved And Unique Features In An Ancient Land Plant Lineage, Eugene V. Shakirov, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendorffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S. …


Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen Oct 2019

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins …


Heterologous Expression Of Pantoea Agglomerans Phytase Gene Optimized For Plant-Host Expression, N. N. Khabipova, L. R. Valeeva, I. B. Chastukhina, M. R. Sharipova, Eugene V. Shakirov Oct 2019

Heterologous Expression Of Pantoea Agglomerans Phytase Gene Optimized For Plant-Host Expression, N. N. Khabipova, L. R. Valeeva, I. B. Chastukhina, M. R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Here we report expression and characterization of recombinant bacterial phytase PaPhyC from Pantoea sp. Codon-optimized phytase gene was expressed E.coli BL21 pLysS and protein expression was confirmed by Western blotting. Recombinant protein expressed in E.coli has high phytase activity. We show that PaPhyC recombinant phytase has different molecular masses when expressed in bacteria and plants, suggesting that possible protein glycosylation in plants may influence its overall size.


Promises And Challenges Of Eco-Physiological Genomics In The Field: Tests Of Drought Responses In Switchgrass. Plant Physiology, John T. Lovell, Eugene V. Shakirov, Scott Schwartz, David B. Lowry, Michael J. Aspinwall, Samuel H. Taylor, Jason Bonnette, Juan Diego Palacio-Mejia, Christine V. Hawkes, Philip A. Fay, Thomas E. Juenger Oct 2019

Promises And Challenges Of Eco-Physiological Genomics In The Field: Tests Of Drought Responses In Switchgrass. Plant Physiology, John T. Lovell, Eugene V. Shakirov, Scott Schwartz, David B. Lowry, Michael J. Aspinwall, Samuel H. Taylor, Jason Bonnette, Juan Diego Palacio-Mejia, Christine V. Hawkes, Philip A. Fay, Thomas E. Juenger

Yevgeniy (Eugene) Shakirov

Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responses …


Drought Responsive Gene Expression Regulatory Divergence Between Upland And Lowland Ecotypes Of A Perennial C4 Grass, John T. Lovell, Scott Schwartz, David B. Lowry, Eugene V. Shakirov, Jason E. Bonnette, Xiaoyu Weng, Mei Wang, Jenifer Johnson, Avinash Sreedasyam, Christopher Plott, Jerry Jenkins, Jeremy Schmutz, Thomas E. Juenger Oct 2019

Drought Responsive Gene Expression Regulatory Divergence Between Upland And Lowland Ecotypes Of A Perennial C4 Grass, John T. Lovell, Scott Schwartz, David B. Lowry, Eugene V. Shakirov, Jason E. Bonnette, Xiaoyu Weng, Mei Wang, Jenifer Johnson, Avinash Sreedasyam, Christopher Plott, Jerry Jenkins, Jeremy Schmutz, Thomas E. Juenger

Yevgeniy (Eugene) Shakirov

Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass, Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. …


Heterologous Expression Of Secreted Bacterial Bpp And Hap Phytases In Plants Stimulates Arabidopsis Thaliana Growth On Phytate., Lia R. Valeeva, Chuluuntsetseg Nyamsuren, Margarita R. Sharipova, Eugene V. Shakirov Oct 2019

Heterologous Expression Of Secreted Bacterial Bpp And Hap Phytases In Plants Stimulates Arabidopsis Thaliana Growth On Phytate., Lia R. Valeeva, Chuluuntsetseg Nyamsuren, Margarita R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family …


Microbial Phytases And Phytate: Exploring Opportunities For Sustainable Phosphorus Management In Agriculture, Nelly P. Balaban, Aliya D. Suleimanova, Lia R. Valeeva, Inna B. Chastukhina, Natalia L. Rudakova, Margarita R. Sharipova, Eugene V. Shakirov Oct 2019

Microbial Phytases And Phytate: Exploring Opportunities For Sustainable Phosphorus Management In Agriculture, Nelly P. Balaban, Aliya D. Suleimanova, Lia R. Valeeva, Inna B. Chastukhina, Natalia L. Rudakova, Margarita R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Myo-inositol phosphates (phytates) are important biological molecules produced largely by plants to store phosphorus. Phytate is very abundant in many different soils making up a large portion of all soil phosphorus. This review assesses current phytase science from the perspective of its substrate, phytate, by examining the intricate relationship between the phytate-hydrolyzing enzymes and phytate as their substrate. Specifically, we examine available data on phytate’s structural features, distribution in nature and functional roles. The role of phytases and their localization in soil and plant tissues are evaluated. We provide a summary of the current biotechnological advances in using industrial …


The Genomic Landscape Of Molecular Responses To Natural Drought Stress In Panicum Hallii., John T. Lovell, Jerry Jenkins, David B. Lowry, Sujan Mamidi, Avinash Sreedasyam, Xiaoyu Weng, Kerrie Barry, Jason Bonnette, Brandon Campitelli, Chris Daum, Sean P. Gordon, Billie A. Gould, Albina Khasanova, Anna Lipzen, Alice Macqueen, Juan Diego Palacio-Mejía, Christopher Plott, Eugene V. Shakirov, Shengqiang Shu, Yuko Yoshinaga, Matt Zane, Dave Kudrna, Jason D. Talag, Daniel Rokhsar, Jane Grimwood, Jeremy Schmutz, Thomas E. Juenger Oct 2019

The Genomic Landscape Of Molecular Responses To Natural Drought Stress In Panicum Hallii., John T. Lovell, Jerry Jenkins, David B. Lowry, Sujan Mamidi, Avinash Sreedasyam, Xiaoyu Weng, Kerrie Barry, Jason Bonnette, Brandon Campitelli, Chris Daum, Sean P. Gordon, Billie A. Gould, Albina Khasanova, Anna Lipzen, Alice Macqueen, Juan Diego Palacio-Mejía, Christopher Plott, Eugene V. Shakirov, Shengqiang Shu, Yuko Yoshinaga, Matt Zane, Dave Kudrna, Jason D. Talag, Daniel Rokhsar, Jane Grimwood, Jeremy Schmutz, Thomas E. Juenger

Yevgeniy (Eugene) Shakirov

Environmental stress is a major driver of ecological community dynamics and agricultural productivity. This is especially true for soil water availability, because drought is the greatest abiotic inhibitor of worldwide crop yields. Here, we test the genetic basis of drought responses in the genetic model for C4 perennial grasses, Panicum hallii, through population genomics, field-scale gene-expression (eQTL) analysis, and comparison of two complete genomes. While gene expression networks are dominated by local cis-regulatory elements, we observe three genomic hotspots of unlinked trans-regulatory loci. These regulatory hubs are four times more drought responsive than the genome-wide average. Additionally, cis- and trans-regulatory …