Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Gfp Tagging Of Sieve Element Occlusion (Seo) Proteins Results In Green Fluorescent Forisomes, Hélène Pélissier, Winfried Peters, Ray Collier, Aart Van Bel, Michael Knoblauch Sep 2008

Gfp Tagging Of Sieve Element Occlusion (Seo) Proteins Results In Green Fluorescent Forisomes, Hélène Pélissier, Winfried Peters, Ray Collier, Aart Van Bel, Michael Knoblauch

Winfried S. Peters

Forisomes are Ca2+-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as ‘FOR’ proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca2+ and chelators …


Iron Fertilization Of Kentucky Bluegrass, David Wehner, Jean Haley May 2008

Iron Fertilization Of Kentucky Bluegrass, David Wehner, Jean Haley

David J. Wehner

Iron applications are sometimes used to enhance the color (darker green) of turfgrass stands even when iron is not deficient. A study was conducted to determine the feasibility of replacing a portion of the total yearly N applied to Kentucky bluegrass (Poa pratensis L.) with iron. Turfgrass response to iron chelate (Sequestrene 330) applications at 2.2 kg Fe ha-1 in combination with three liquid-applied N sources (urea, Formolene, and FLUF) at 25 kg N ha-1 was compared to turf response from applications of the N sources at 49 kg N ha-1. Iron was substituted for …


Models For Predicting The Lower Limit Of The Canopy-Air Temperature Difference Of Two Cool Season Grasses, Dennis Martin, David Wehner, C. Throssell Apr 2008

Models For Predicting The Lower Limit Of The Canopy-Air Temperature Difference Of Two Cool Season Grasses, Dennis Martin, David Wehner, C. Throssell

David J. Wehner

Estimation of the lower limit of the canopy-air temperature differential, (Tc–Ta)LL, is required for calculation of an empirically-based crop water stress, index. This research determined the complexity of model needed for accurate estimation of (Tc–Ta)LL for several field grown cultivars of Kentucky bluegrass (Poa pratensis L.) and for creeping bentgrass (Agrostis stolonifera L. var. palustris (Huds.) Farw.). Regression models using vapor pressure deficit of the air (VPD), net radiation load (Rn), and wind speed (WS) were developed for predicting (Tc–Ta …


Melamine/Urea And Oxamide Fertilization Of Kentucky Bluegrass, David Wehner, Dennis Martin Apr 2008

Melamine/Urea And Oxamide Fertilization Of Kentucky Bluegrass, David Wehner, Dennis Martin

David J. Wehner

The commercial lawn care industry represents a large market for N sources. A formulated melamine (2,4,6-triamino-s-triazine) plus urea combination (MLU) (45% melamine by weight) and oxamide were evaluated for use by the lawn care industry by comparing turfgrass response from these fertilizers to that from urea, sulfur coated urea (SCU), ureaformaldehyde (Nitroform), and a non-fertilized check. Fertilizers were applied four times per year to field plots of Kentucky bluegrass (Poa pratensis L.) growing on a Flanagan silt loam (fine, montmorillonitic, mesic Aquic Argiudoll) at a rate of 49 kg N ha-1 per application. Color ratings and clipping weights were determined …


Anisotropic Contraction In Forisomes: Simple Models Won't Fit, Winfried Peters, Michael Knoblauch, Stephen Warmann, William Pickard, Amy Shen Mar 2008

Anisotropic Contraction In Forisomes: Simple Models Won't Fit, Winfried Peters, Michael Knoblauch, Stephen Warmann, William Pickard, Amy Shen

Winfried S. Peters

Forisomes are ATP-independent, Ca2+-driven contractile protein bodies acting as reversible valves in the phloem of plants of the legume family. Forisome contraction is anisotropic, as shrinkage in length is associated with radial expansion and vice versa. To test the hypothesis that changes in length and width are causally related, we monitored Ca2+- and pH-dependent deformations in the exceptionally large forisomes of Canavalia gladiata by high-speed photography, and computed time-courses of derived geometric parameters (including volume and surface area). Soybean forisomes, which in the resting state resemble those of Canavalia geometrically but have less than 2% of the volume, were also …