Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Advancing Cyanobacteria Biomass Estimation From Hyperspectral Observations: Demonstrations With Hico And Prisma Imagery, Ryan E. O'Shea, Nima Pahlevan, Brandon Smith, Mariano Bresciani, Todd Egerton, Claudia Giardino, Lin Li, Tim Moore, Antonio Ruiz-Verdu, Steve Ruberg, Stefan G.H. Simis, Richard Stumpf, Diana Vaičiūtė Jan 2021

Advancing Cyanobacteria Biomass Estimation From Hyperspectral Observations: Demonstrations With Hico And Prisma Imagery, Ryan E. O'Shea, Nima Pahlevan, Brandon Smith, Mariano Bresciani, Todd Egerton, Claudia Giardino, Lin Li, Tim Moore, Antonio Ruiz-Verdu, Steve Ruberg, Stefan G.H. Simis, Richard Stumpf, Diana Vaičiūtė

Biological Sciences Faculty Publications

Retrieval of the phycocyanin concentration (PC), a characteristic pigment of, and proxy for, cyanobacteria biomass, from hyperspectral satellite remote sensing measurements is challenging due to uncertainties in the remote sensing reflectance (∆Rrs) resulting from atmospheric correction and instrument radiometric noise. Although several individual algorithms have been proven to capture local variations in cyanobacteria biomass in specific regions, their performance has not been assessed on hyperspectral images from satellite sensors. Our work leverages a machine-learning model, Mixture Density Networks (MDNs), trained on a large (N = 939) dataset of collocated in situ chlorophyll-a concentrations (Chla), …


Population-Level Coordination Of Pigment Response In Individual Cyanobacterial Cells Under Altered Nitrogen Levels, Jaclyn Murton, Aparna Nagarajan, Amelia Y. Nguyen, Michelle Liberton, Harmony A. Hancock, Himadri B. Pakrasi, Jerilyn A. Timlin Jul 2017

Population-Level Coordination Of Pigment Response In Individual Cyanobacterial Cells Under Altered Nitrogen Levels, Jaclyn Murton, Aparna Nagarajan, Amelia Y. Nguyen, Michelle Liberton, Harmony A. Hancock, Himadri B. Pakrasi, Jerilyn A. Timlin

Biological Sciences Faculty Publications

Cyanobacterial phycobilisome (PBS) pigment-protein complexes harvest light and transfer the energy to reaction centers. Previous ensemble studies have shown that cyanobacteria respond to changes in nutrient availability by modifying the structure of PBS complexes, but this process has not been visualized for individual pigments at the single-cell level due to spectral overlap. We characterized the response of four key photosynthetic pigments to nitrogen depletion and repletion at the subcellular level in individual, live Synechocystis sp. PCC 6803 cells using hyperspectral confocal fluorescence microscopy and multivariate image analysis. Our results revealed that PBS degradation and re-synthesis comprise a rapid response to …


Cyanobacteria Dominance In The Oligohaline Waters Of Back Bay, Virginia, Harold G. Marshall Jan 2012

Cyanobacteria Dominance In The Oligohaline Waters Of Back Bay, Virginia, Harold G. Marshall

Biological Sciences Faculty Publications

Back Bay and its flora have historically been influenced by the interaction of freshwater flow in combination with frequent intrusion of saline water into its basin. These events have resulted in a dynamic environmental setting influencing the abundance and composition of its phytoplankton community. Dominating these oligohaline waters is a diverse representation and high abundance of freshwater filamentous and colonial cyanobacteria. These include the nonheterocystous Planktolyngbya contorta, Planktolyngbya limnetica, and Pseudanabaena limnetica, taxa implicated as bloom producers in Bay waters with N:P molar ratios ranging from 23:1 to 74:1.


Potential Effects Of Catastrophic Cyanobacteria Blooms On Caribbean Spiny Lobster Population Dynamics In Florida Bay Usa, Donald C. Behringer, Mark J. Butler Iv Jan 2009

Potential Effects Of Catastrophic Cyanobacteria Blooms On Caribbean Spiny Lobster Population Dynamics In Florida Bay Usa, Donald C. Behringer, Mark J. Butler Iv

Biological Sciences Faculty Publications

No abstract provided.


Cascading Disturbances In Florida Bay, Usa: Cyanobacteria Blooms, Sponge Mortality, And Implications For Juvenile Spiny Lobsters Panulirus Argus, Mark J. Butler Iv, John H. Hunt, William F. Herrnkind, Michael J. Childress, Rodney Bertelsen, William Sharp, Thomas Matthews, Jennifer M. Field, Harold G. Marshall Dec 1995

Cascading Disturbances In Florida Bay, Usa: Cyanobacteria Blooms, Sponge Mortality, And Implications For Juvenile Spiny Lobsters Panulirus Argus, Mark J. Butler Iv, John H. Hunt, William F. Herrnkind, Michael J. Childress, Rodney Bertelsen, William Sharp, Thomas Matthews, Jennifer M. Field, Harold G. Marshall

Biological Sciences Faculty Publications

Florida Bay, the shallow lagoon separating mainland Florida and the Florida Keys, USA, is experiencing an unprecedented series of ecological disturbances. In 1991, following reports of other ecosystem perturbations, we observed widespread and persistent blooms of cyanobacteria that coincided with the decimation of sponge communities over hundreds of square kilometers. Juvenile Caribbean spiny lobsters Panulirus argus, among other animals, rely on sponges for shelter; the impact of sponge loss on the abundance of lobsters and their use of shelter, in particular, has been dramatic. The loss of sponges on 27 experimental sites in hard bottom habitat in central Florida Bay …


Phytoplankton Relationships To Water Quality In Lake Drummond And Two Drainage Ditches, Christine G. Phillips, Harold G. Marshall Jan 1993

Phytoplankton Relationships To Water Quality In Lake Drummond And Two Drainage Ditches, Christine G. Phillips, Harold G. Marshall

Biological Sciences Faculty Publications

A twelve-month phytoplankton study was conducted in Lake Drummond and Washington and Jericho Ditches from December 1988 to November 1989. Four dominant phytoplankton groups were identified at these sites. These were the Bacillariophyceae, Cyanophyceae, Cryptophyceae and an autotrophic picoplankton component. Over the past 20 years there has been a decrease in the mean pH levels of Lake Drummond and the replacement of one its former major components, the Chlorophyceae, by the Cyanophyceae. Based on water quality analysis results and species diversity indices, Lake Drummond is classified as in an early eutrophic stage of development.