Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Life Sciences

Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine Sep 2015

Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine

Dartmouth Scholarship

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an …


An Approach For Determining And Measuring Network Hierarchy Applied To Comparing The Phosphorylome And The Regulome, Chao Cheng, Erik Andrews, Koon-Kiu Yan, Matthew Ung, Daifeng Wang, Mark Gerstein Mar 2015

An Approach For Determining And Measuring Network Hierarchy Applied To Comparing The Phosphorylome And The Regulome, Chao Cheng, Erik Andrews, Koon-Kiu Yan, Matthew Ung, Daifeng Wang, Mark Gerstein

Dartmouth Scholarship

Many biological networks naturally form a hierarchy with a preponderance of downward information flow. In this study, we define a score to quantify the degree of hierarchy in a network and develop a simulated-annealing algorithm to maximize the hierarchical score globally over a network. We apply our algorithm to determine the hierarchical structure of the phosphorylome in detail and investigate the correlation between its hierarchy and kinase properties. We also compare it to the regulatory network, finding that the phosphorylome is more hierarchical than the regulome.


Collapse Of An Ecological Network In Ancient Egypt, Justin Yeakel, Mathias Pires, Lars Rudolf, Nathaniel Dominy Oct 2014

Collapse Of An Ecological Network In Ancient Egypt, Justin Yeakel, Mathias Pires, Lars Rudolf, Nathaniel Dominy

Dartmouth Scholarship

The dynamics of ecosystem collapse are fundamental to determining how and why biological communities change through time, as well as the potential effects of extinctions on ecosystems. Here, we integrate depictions of mammals from Egyptian antiquity with direct lines of paleontological and archeological evidence to infer local extinctions and community dynamics over a 6,000-y span. The unprecedented temporal resolution of this dataset enables examination of how the tandem effects of human population growth and climate change can disrupt mammalian communities. We show that the extinctions of mammals in Egypt were nonrandom and that destabilizing changes in community composition coincided with …


Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek Sep 2014

Natural Selection On Thermal Performance In A Novel Thermal Environment, Michael L. Logan, Robert M. Cox, Ryan Calsbeek

Dartmouth Scholarship

Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation …


Neurospora Wc-1 Recruits Swi/Snf To Remodel Frequency And Initiate A Circadian Cycle, Bin Wang, Arminja N. Kettenbach, Scott A. Gerber, Jennifer J. Loros, Jay C. Dunlap Sep 2014

Neurospora Wc-1 Recruits Swi/Snf To Remodel Frequency And Initiate A Circadian Cycle, Bin Wang, Arminja N. Kettenbach, Scott A. Gerber, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100–200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and …


Recent Shifts In The Occurrence, Cause, And Magnitude Of Animal Mass Mortality Events, Samuel B. Fey, Adam M. Siepielski, Sébastien Nusslé, Kristina Cervantes-Yoshida, Jason L. Hwan, Eric R. Huber, Maxfield J. Fey, Alessandro Catenazzi, Stephanie M. Carlson Aug 2014

Recent Shifts In The Occurrence, Cause, And Magnitude Of Animal Mass Mortality Events, Samuel B. Fey, Adam M. Siepielski, Sébastien Nusslé, Kristina Cervantes-Yoshida, Jason L. Hwan, Eric R. Huber, Maxfield J. Fey, Alessandro Catenazzi, Stephanie M. Carlson

Dartmouth Scholarship

Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: re- moving more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here …


Integrated Assessment Of Predicted Mhc Binding And Cross-Conservation With Self Reveals Patterns Of Viral Camouflage, Lu He, Anne S. De Groot, Andres H. Gutierrez, William D. Martin, Lenny Moise, Chris Bailey-Kellogg Mar 2014

Integrated Assessment Of Predicted Mhc Binding And Cross-Conservation With Self Reveals Patterns Of Viral Camouflage, Lu He, Anne S. De Groot, Andres H. Gutierrez, William D. Martin, Lenny Moise, Chris Bailey-Kellogg

Dartmouth Scholarship

Immune recognition of foreign proteins by T cells hinges on the formation of a ternary complex sandwiching a constituent peptide of the protein between a major histocompatibility complex (MHC) molecule and a T cell receptor (TCR). Viruses have evolved means of "camouflaging" themselves, avoiding immune recognition by reducing the MHC and/or TCR binding of their constituent peptides. Computer-driven T cell epitope mapping tools have been used to evaluate the degree to which articular viruses have used this means of avoiding immune response, but most such analyses focus on MHC-facing ‘agretopes'. Here we set out a new means of evaluating the …


Trip/Nopo E3 Ubiquitin Ligase Promotes Ubiquitylation Of Dna Polymerase Η, Heather A. Wallace, Julie A. Merkle, Michael C. Yu, Taloa G. Berg, Ethan Lee, Giovanni Bosco, Laura A. Lee Jan 2014

Trip/Nopo E3 Ubiquitin Ligase Promotes Ubiquitylation Of Dna Polymerase Η, Heather A. Wallace, Julie A. Merkle, Michael C. Yu, Taloa G. Berg, Ethan Lee, Giovanni Bosco, Laura A. Lee

Dartmouth Scholarship

We previously identified a Drosophila maternal effect-lethal mutant named ‘no poles’ (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of …


The Fungal Pathogen Aspergillus Fumigatus Regulates Growth, Metabolism, And Stress Resistance In Response To Light, Kevin K. Fuller, Carol S. Ringelberg, Jennifer J. Loros, Jay C. Dunlap May 2013

The Fungal Pathogen Aspergillus Fumigatus Regulates Growth, Metabolism, And Stress Resistance In Response To Light, Kevin K. Fuller, Carol S. Ringelberg, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Light is a pervasive environmental factor that regulates development, stress resistance, and even virulence in numerous fungal species. Though much research has focused on signaling pathways in Aspergillus fumigatus, an understanding of how this pathogen responds to light is lacking. In this report, we demonstrate that the fungus does indeed respond to both blue and red portions of the visible spectrum. Included in the A. fumigatus light response is a reduction in conidial germination rates, increased hyphal pigmentation, enhanced resistance to acute ultraviolet and oxidative stresses, and an increased susceptibility to cell wall perturbation. By performing gene deletion analyses, we …


Force Generation By Kinesin And Myosin Cytoskeletal Motor Proteins, F. Jon Kull, Sharyn A. Endow Jan 2013

Force Generation By Kinesin And Myosin Cytoskeletal Motor Proteins, F. Jon Kull, Sharyn A. Endow

Dartmouth Scholarship

Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central β-sheet - proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins - is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, …


Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert Sep 2012

Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert

Dartmouth Scholarship

Iron deficiency induces a complex set of responses in plants, including developmental and physiological changes, to increase iron uptake from soil. In Arabidopsis, many transporters involved in the absorption and distribution of iron have been identified over the past decade. However, little is known about the signaling pathways and networks driving the various responses to low iron. Only the basic helix–loop–helix (bHLH) transcription factor FIT has been shown to control the expression of the root iron uptake machinery genes FRO2 and IRT1. Here, we characterize the biological role of two other iron-regulated transcription factors, bHLH100 and bHLH101, in iron homeostasis. …


Predator Mediated Selection And The Impact Of Developmental Stage On Viability In Wood Frog Tadpoles (Rana Sylvatica), Ryan Calsbeek, Shawn Kuchta Dec 2011

Predator Mediated Selection And The Impact Of Developmental Stage On Viability In Wood Frog Tadpoles (Rana Sylvatica), Ryan Calsbeek, Shawn Kuchta

Dartmouth Scholarship

Complex life histories require adaptation of a single organism for multiple ecological niches. Transitions between life stages, however, may expose individuals to an increased risk of mortality, as the process of metamorphosis typically includes developmental stages that function relatively poorly in both the pre- and post-metamorphic habitat. We studied predator-mediated selection on tadpoles of the wood frog, Rana sylvatica, to identify this hypothesized period of differential predation risk and estimate its ontogenetic onset. We reared tadpoles in replicated mesocosms in the presence of the larval odonate Anax junius, a known tadpole predator.


Merging Resource Availability With Isotope Mixing Models: The Role Of Neutral Interaction Assumptions, Justin D. Yeakel, Mark Novak, Paulo R. Guimarães, Nathaniel J. Dominy, Paul L. Koch, Eric J. Ward, Jonathan W. Moore, Brice X. Semmens Jul 2011

Merging Resource Availability With Isotope Mixing Models: The Role Of Neutral Interaction Assumptions, Justin D. Yeakel, Mark Novak, Paulo R. Guimarães, Nathaniel J. Dominy, Paul L. Koch, Eric J. Ward, Jonathan W. Moore, Brice X. Semmens

Dartmouth Scholarship

Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predator's diet and introduces the strong assumption of consumer ultrageneralism (where …


Constraint-Based Model Of Shewanella Oneidensis Mr-1 Metabolism: A Tool For Data Analysis And Hypothesis Generation, Grigoriy E. Pinchuk, Eric A. Hill, Oleg V. Geydebrekht, Jessica De Ingeniis, Xiaolin Zhang, Andrei Osterman, James H. Scott Jun 2010

Constraint-Based Model Of Shewanella Oneidensis Mr-1 Metabolism: A Tool For Data Analysis And Hypothesis Generation, Grigoriy E. Pinchuk, Eric A. Hill, Oleg V. Geydebrekht, Jessica De Ingeniis, Xiaolin Zhang, Andrei Osterman, James H. Scott

Dartmouth Scholarship

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based …


Magnesium Excretion In C. Elegans Requires The Activity Of The Gtl-2 Trpm Channel, Takayuki Teramoto, Laura A. Sternick, Eriko Kage-Nakadai, Shirine Sajjadi, Jakub Siembida, Shohei Mitani, Kouichi Iwasaki, Eric J. Lambie Mar 2010

Magnesium Excretion In C. Elegans Requires The Activity Of The Gtl-2 Trpm Channel, Takayuki Teramoto, Laura A. Sternick, Eriko Kage-Nakadai, Shirine Sajjadi, Jakub Siembida, Shohei Mitani, Kouichi Iwasaki, Eric J. Lambie

Dartmouth Scholarship

Systemic magnesium homeostasis in mammals is primarily governed by the activities of the TRPM6 and TRPM7 cation channels, which mediate both uptake by the intestinal epithelial cells and reabsorption by the distal convoluted tubule cells in the kidney. In the nematode, C. elegans, intestinal magnesium uptake is dependent on the activities of the TRPM channel proteins, GON-2 and GTL-1. In this paper we provide evidence that another member of the TRPM protein family, GTL-2, acts within the C. elegans excretory cell to mediate the excretion of excess magnesium. Thus, the activity of GTL-2 balances the activities of the paralogous …


Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


A Protein Methylation Pathway In Chlamydomonas Flagella Is Active During Flagellar Resorption, Mark J. Schneider, Megan Ulland, Roger D. Sloboda Aug 2008

A Protein Methylation Pathway In Chlamydomonas Flagella Is Active During Flagellar Resorption, Mark J. Schneider, Megan Ulland, Roger D. Sloboda

Dartmouth Scholarship

During intraflagellar transport (IFT), the regulation of motor proteins, the loading and unloading of cargo and the turnover of flagellar proteins all occur at the flagellar tip. To begin an analysis of the protein composition of the flagellar tip, we used difference gel electrophoresis to compare long versus short (i.e., regenerating) flagella. The concentration of tip proteins should be higher relative to that of tubulin (which is constant per unit length of the flagellum) in short compared with long flagella. One protein we have identified is the cobalamin-independent form of methionine synthase (MetE). Antibodies to MetE label flagella in a …


Integration Host Factor Positively Regulates Virulence Gene Expression In Vibrio Cholerae, Emily Stonehouse, Gabriela Kovacikova, Ronald K. Taylor, Karen Skorupski Apr 2008

Integration Host Factor Positively Regulates Virulence Gene Expression In Vibrio Cholerae, Emily Stonehouse, Gabriela Kovacikova, Ronald K. Taylor, Karen Skorupski

Dartmouth Scholarship

Virulence gene expression in Vibrio cholerae is dependent upon a complex transcriptional cascade that is influenced by both specific and global regulators in response to environmental stimuli. Here, we report that the global regulator integration host factor (IHF) positively affects virulence gene expression in V. cholerae. Inactivation of ihfA and ihfB, the genes encoding the IHF subunits, decreased the expression levels of the two main virulence factors tcpA and ctx and prevented toxin-coregulated pilus and cholera toxin production. IHF was found to directly bind to and bend the tcpA promoter region at an IHF consensus site centered at position 162 …


The Tempo And Mode Of Three‐Dimensional Morphological Evolution In Male Reproductive Structures, Mark A. Mcpeek, Li Shen, John Z. Torrey, Hany Farid Mar 2008

The Tempo And Mode Of Three‐Dimensional Morphological Evolution In Male Reproductive Structures, Mark A. Mcpeek, Li Shen, John Z. Torrey, Hany Farid

Dartmouth Scholarship

Various evolutionary forces may shape the evolution of traits that influence the mating decisions of males and females. Phe- notypic traits that males and females use to judge the species identify of potential mates should evolve in a punctuated fashion, changing significantly at the time of speciation but changing little between speciation events. In contrast, traits experiencing sexual selection or sexually antagonistic interactions are generally expected to change continuously over time because of the directional selection pressures imposed on one sex by the actions of the other. To test these hy- potheses, we used spherical harmonic representations of the shapes …


Arsenic As An Endocrine Disruptor: Arsenic Disrupts Retinoic Acid Receptor–And Thyroid Hormone Receptor–Mediated Gene Regulation And Thyroid Hormone–Mediated Amphibian Tail Metamorphosis, Jennifer C. Davey, Athena P. Nomikos, Manida Wungjiranirun, Jenna R. Sherman, Liam Ingram, Cavus Batki, Jean P. Lariviere, Joshua W. Hamilton Feb 2008

Arsenic As An Endocrine Disruptor: Arsenic Disrupts Retinoic Acid Receptor–And Thyroid Hormone Receptor–Mediated Gene Regulation And Thyroid Hormone–Mediated Amphibian Tail Metamorphosis, Jennifer C. Davey, Athena P. Nomikos, Manida Wungjiranirun, Jenna R. Sherman, Liam Ingram, Cavus Batki, Jean P. Lariviere, Joshua W. Hamilton

Dartmouth Scholarship

Background:

Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors.

Objectives:

The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid …


Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom Dec 2007

Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom

Dartmouth Scholarship

Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. …


A Conserved Cam- And Radial Spoke–Associated Complex Mediates Regulation Of Flagellar Dynein Activity, Erin E. Dymek, Elizabeth F. Smith Nov 2007

A Conserved Cam- And Radial Spoke–Associated Complex Mediates Regulation Of Flagellar Dynein Activity, Erin E. Dymek, Elizabeth F. Smith

Dartmouth Scholarship

For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which …


Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom Oct 2007

Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom

Dartmouth Scholarship

Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 …


Inverse Regulation Of Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, Judith H. Merritt, Kimberly M. Brothers, George A. O'Toole Mar 2007

Inverse Regulation Of Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, Judith H. Merritt, Kimberly M. Brothers, George A. O'Toole

Dartmouth Scholarship

We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). …


Integration Without Unification: An Argument For Pluralism In The Biological Sciences, Sandra D. Mitchell, Michael R. Dietrich Dec 2006

Integration Without Unification: An Argument For Pluralism In The Biological Sciences, Sandra D. Mitchell, Michael R. Dietrich

Dartmouth Scholarship

In this article, we consider the tension between unification and pluralism in biological theory. We begin with a consideration of historical efforts to establish a unified understanding of evolution in the neo‐Darwinian synthesis. The fragmentation of the evolutionary synthesis by molecular evolution suggests the limitations of the general unificationist ideal for biology but not necessarily for integrating explanations. In the second half of this article, we defend a specific variety of pluralism that allows for the integration required for explanations of complex phenomena without unification on a large scale.


Agswe1p Regulates Mitosis In Response To Morphogenesis And Nutrients In Multinucleated Ashbya Gossypii Cells, Hanspeter Helfer, Amy S. Gladfelter Aug 2006

Agswe1p Regulates Mitosis In Response To Morphogenesis And Nutrients In Multinucleated Ashbya Gossypii Cells, Hanspeter Helfer, Amy S. Gladfelter

Dartmouth Scholarship

Nuclei in the filamentous, multinucleated fungus Ashbya gossypii divide asynchronously. We have investigated what internal and external signals spatially direct mitosis within these hyphal cells. Mitoses are most common near cortical septin rings found at growing tips and branchpoints. In septin mutants, mitoses are no longer concentrated at branchpoints, suggesting that the septin rings function to locally promote mitosis near new branches. Similarly, cells lacking AgSwe1p kinase (a Wee1 homologue), AgHsl1p (a Nim1-related kinase), and AgMih1p phosphatase (the Cdc25 homologue that likely counteracts AgSwe1p activity) also have mitoses distributed randomly in the hyphae as opposed to at branchpoints. Surprisingly, however, …


Circadian Rhythmicity By Autocatalysis, Arun Mehra, Christian I. Hong, Mi Shi, Jennifer J. Loros, Jay C. Dunlap, Peter Ruoff Jul 2006

Circadian Rhythmicity By Autocatalysis, Arun Mehra, Christian I. Hong, Mi Shi, Jennifer J. Loros, Jay C. Dunlap, Peter Ruoff

Dartmouth Scholarship

The temperature compensated in vitro oscillation of cyanobacterial KaiC phosphorylation, the first example of a thermodynamically closed system showing circadian rhythmicity, only involves the three Kai proteins (KaiA, KaiB, and KaiC) and ATP. In this paper, we describe a model in which the KaiA- and KaiB-assisted autocatalytic phosphorylation and dephosphorylation of KaiC are the source for circadian rhythmicity. This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles and has period lengths and rate constant values that are consistent with experimental observations.


The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap Dec 2005

The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Temperature compensation is an important property of all biological clocks. In Neurospora crassa, negative-feedback regulation on the frequency (frq) gene's transcription by the FRQ protein plays a central role in the organism's circadian pacemaker. Earlier model calculations predicted that the stability of FRQ should determine the period length of Neurospora's circadian rhythm as well as the rhythm's temperature compensation. Here, we report experimental FRQ protein stabilities in frq mutants at 20 degrees C and 25 degrees C, and estimates of overall activation energies for mutant FRQ protein degradation. The results are consistent with earlier model predictions, i.e., temperature compensation of …


A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore Mar 2005

A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore

Dartmouth Scholarship

Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo.

.


Disulfide Bond Formation Involves A Quinhydrone-Type Charge–Transfer Complex, James Regeimbal, Stefan Gleiter, Bernard L. Trumpower, Chang-Ang Yu Nov 2003

Disulfide Bond Formation Involves A Quinhydrone-Type Charge–Transfer Complex, James Regeimbal, Stefan Gleiter, Bernard L. Trumpower, Chang-Ang Yu

Dartmouth Scholarship

The chemistry of disulfide exchange in biological systems is well studied. However, the detailed mechanism of how oxidizing equivalents are derived to form disulfide bonds in proteins is not clear. In prokaryotic organisms, it is known that DsbB delivers oxidizing equivalents through DsbA to secreted proteins. DsbB becomes reoxidized by reducing quinones that are part of the membrane-bound electron-transfer chains. It is this quinone reductase activity that links disulfide bond formation to the electron transport system. We show here that purified DsbB contains the spectral signal of a quinhydrone, a charge-transfer complex consisting of a hydroquinone and a quinone in …