Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

The Bile Response Repressor Brer Regulates Expression Of The Vibrio Cholerae Breab Efflux System Operon, Francisca A. Cerda-Maira, Carol S. Ringelberg, Ronald K. Taylor Sep 2008

The Bile Response Repressor Brer Regulates Expression Of The Vibrio Cholerae Breab Efflux System Operon, Francisca A. Cerda-Maira, Carol S. Ringelberg, Ronald K. Taylor

Dartmouth Scholarship

Enteric pathogens have developed several resistance mechanisms to survive the antimicrobial action of bile. We investigated the transcriptional profile of Vibrio cholerae O1 El Tor strain C6706 under virulence gene-inducing conditions in the presence and absence of bile. Microarray analysis revealed that the expression of 119 genes was affected by bile. The mRNA levels of genes encoding proteins involved in transport were increased in the presence of bile, whereas the mRNA levels of genes encoding proteins involved in pathogenesis and chemotaxis were decreased. This study identified genes encoding transcriptional regulators from the TetR family (vexR and breR) and …


A Protein Methylation Pathway In Chlamydomonas Flagella Is Active During Flagellar Resorption, Mark J. Schneider, Megan Ulland, Roger D. Sloboda Aug 2008

A Protein Methylation Pathway In Chlamydomonas Flagella Is Active During Flagellar Resorption, Mark J. Schneider, Megan Ulland, Roger D. Sloboda

Dartmouth Scholarship

During intraflagellar transport (IFT), the regulation of motor proteins, the loading and unloading of cargo and the turnover of flagellar proteins all occur at the flagellar tip. To begin an analysis of the protein composition of the flagellar tip, we used difference gel electrophoresis to compare long versus short (i.e., regenerating) flagella. The concentration of tip proteins should be higher relative to that of tubulin (which is constant per unit length of the flagellum) in short compared with long flagella. One protein we have identified is the cobalamin-independent form of methionine synthase (MetE). Antibodies to MetE label flagella in a …


Integration Host Factor Positively Regulates Virulence Gene Expression In Vibrio Cholerae, Emily Stonehouse, Gabriela Kovacikova, Ronald K. Taylor, Karen Skorupski Apr 2008

Integration Host Factor Positively Regulates Virulence Gene Expression In Vibrio Cholerae, Emily Stonehouse, Gabriela Kovacikova, Ronald K. Taylor, Karen Skorupski

Dartmouth Scholarship

Virulence gene expression in Vibrio cholerae is dependent upon a complex transcriptional cascade that is influenced by both specific and global regulators in response to environmental stimuli. Here, we report that the global regulator integration host factor (IHF) positively affects virulence gene expression in V. cholerae. Inactivation of ihfA and ihfB, the genes encoding the IHF subunits, decreased the expression levels of the two main virulence factors tcpA and ctx and prevented toxin-coregulated pilus and cholera toxin production. IHF was found to directly bind to and bend the tcpA promoter region at an IHF consensus site centered at position 162 …


Mechanistic Home Range Models And Resource Selection Analysis: A Reconciliation And Unification, Paul R. Moorcroft, Alex Barnett Apr 2008

Mechanistic Home Range Models And Resource Selection Analysis: A Reconciliation And Unification, Paul R. Moorcroft, Alex Barnett

Dartmouth Scholarship

In the three decades since its introduction, resource selection analysis (RSA) has become a widespread method for analyzing spatial patterns of animal relocations obtained from telemetry studies. Recently, mechanistic home range models have been proposed as an alternative framework for studying patterns of animal space-use. In contrast to RSA models, mechanistic home range models are derived from underlying mechanistic descriptions of individual movement behavior and yield spatially explicit predictions for patterns of animal space-use. In addition, their mechanistic underpinning means that, unlike RSA, mechanistic home range models can also be used to predict changes in space-use following perturbation. In this …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


The Tempo And Mode Of Three‐Dimensional Morphological Evolution In Male Reproductive Structures, Mark A. Mcpeek, Li Shen, John Z. Torrey, Hany Farid Mar 2008

The Tempo And Mode Of Three‐Dimensional Morphological Evolution In Male Reproductive Structures, Mark A. Mcpeek, Li Shen, John Z. Torrey, Hany Farid

Dartmouth Scholarship

Various evolutionary forces may shape the evolution of traits that influence the mating decisions of males and females. Phe- notypic traits that males and females use to judge the species identify of potential mates should evolve in a punctuated fashion, changing significantly at the time of speciation but changing little between speciation events. In contrast, traits experiencing sexual selection or sexually antagonistic interactions are generally expected to change continuously over time because of the directional selection pressures imposed on one sex by the actions of the other. To test these hy- potheses, we used spherical harmonic representations of the shapes …


Micrornas And The Advent Of Vertebrate Morphological Complexity, Alysha M. Heimberg, Lorenzo F. Sempere, Vanessa N. Moy, Phillip C. J. Donoghue, Kevin J. Peterson Feb 2008

Micrornas And The Advent Of Vertebrate Morphological Complexity, Alysha M. Heimberg, Lorenzo F. Sempere, Vanessa N. Moy, Phillip C. J. Donoghue, Kevin J. Peterson

Dartmouth Scholarship

The causal basis of vertebrate complexity has been sought in genome duplication events (GDEs) that occurred during the emergence of vertebrates, but evidence beyond coincidence is wanting. MicroRNAs (miRNAs) have recently been identified as a viable causal factor in increasing organismal complexity through the action of these ≈22-nt noncoding RNAs in regulating gene expression. Because miRNAs are continuously being added to animalian genomes, and, once integrated into a gene regulatory network, are strongly conserved in primary sequence and rarely secondarily lost, their evolutionary history can be accurately reconstructed. Here, using a combination of Northern analyses and genomic searches, we show …


Aging Predisposes Oocytes To Meiotic Nondisjunction When The Cohesin Subunit Smc1 Is Reduced, Vijayalakshmi V. Subramanian, Sharon E. Bickel Jan 2008

Aging Predisposes Oocytes To Meiotic Nondisjunction When The Cohesin Subunit Smc1 Is Reduced, Vijayalakshmi V. Subramanian, Sharon E. Bickel

Dartmouth Scholarship

In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age- dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 …