Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 85

Full-Text Articles in Life Sciences

Alcohol Discrimination And Preferences In Two Species Of Nectar-Feeding Primate, Samuel R. Gochman, Michael B. Brown, Nathaniel J. Dominy Jun 2016

Alcohol Discrimination And Preferences In Two Species Of Nectar-Feeding Primate, Samuel R. Gochman, Michael B. Brown, Nathaniel J. Dominy

Dartmouth Scholarship

Recent reports suggest that dietary ethanol, or alcohol, is a supplemental source of calories for some primates. For example, slow lorises (Nycticebus coucang) consume fermented nectars with a mean alcohol concentration of 0.6% (range: 0.0–3.8%). A similar behaviour is hypothesized for aye-ayes (Daubentonia madagascariensis) based on a single point mutation (A294V) in the gene that encodes alcohol dehydrogenase class IV (ADH4), the first enzyme to catabolize alcohol during digestion. The mutation increases catalytic efficiency 40-fold and may confer a selective advantage to aye-ayes that consume the nectar of Ravenala madagascariensis. It is uncertain, however, whether alcohol exists in this nectar …


Comprehensive Genetic Testing Identifies Targetable Genomic Alterations In Most Patients With Non-Small Cell Lung Cancer, Specifically Adenocarcinoma, Single Institute Investigation, Janani Vigneswaran, Yi-Hung Carol Tan, Septimiu D. Murgu, Brian M. Won, Kathryn Alexa Patton, Victoria M. Villaflor, Philip C. Hoffman, Thomas Hensing, D. Kyle Hogarth, Renuka Malik Feb 2016

Comprehensive Genetic Testing Identifies Targetable Genomic Alterations In Most Patients With Non-Small Cell Lung Cancer, Specifically Adenocarcinoma, Single Institute Investigation, Janani Vigneswaran, Yi-Hung Carol Tan, Septimiu D. Murgu, Brian M. Won, Kathryn Alexa Patton, Victoria M. Villaflor, Philip C. Hoffman, Thomas Hensing, D. Kyle Hogarth, Renuka Malik

Dartmouth Scholarship

This study reviews extensive genetic analysis in advanced non-small cell lung cancer (NSCLC) patients in order to: describe how targetable mutation genes interrelate with the genes identified as variants of unknown significance; assess the percentage of patients with a potentially targetable genetic alterations; evaluate the percentage of patients who had concurrent alterations, previously considered to be mutually exclusive; and characterize the molecular subset of KRAS. Thoracic Oncology Research Program Databases at the University of Chicago provided patient demographics, pathology, and results of genetic testing. 364 patients including 289 adenocarcinoma underwent genotype testing by various platforms such as FoundationOne, Caris Molecular …


Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter Oct 2015

Yeast Integral Membrane Proteins Apq12, Brl1, And Brr6 Form A Complex Important For Regulation Of Membrane Homeostasis And Nuclear Pore Complex Biogenesis, Museer A. Lone, Aaron E. Atkinson, Christine A. Hodge, Stéphanie Cottier, Fernando Martínez-Montañés, Shelley Maithel, Laurent Mène-Saffrané, Cole Cole, Roger Schneiter

Dartmouth Scholarship

Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical proper- ties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during in- terphase in all eukaryotes. Here we report on the role of …


Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine Sep 2015

Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine

Dartmouth Scholarship

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an …


Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


Allelic Polymorphism Of Gigantea Is Responsible For Naturally Occurring Variation In Circadian Period In Brassica Rapa, Qiguang Xie, Ping Lou, Victor Hermand, Rashid Aman Mar 2015

Allelic Polymorphism Of Gigantea Is Responsible For Naturally Occurring Variation In Circadian Period In Brassica Rapa, Qiguang Xie, Ping Lou, Victor Hermand, Rashid Aman

Dartmouth Scholarship

GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the …


Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss Feb 2015

Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss

Dartmouth Scholarship

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2 , and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the …


Neurospora Wc-1 Recruits Swi/Snf To Remodel Frequency And Initiate A Circadian Cycle, Bin Wang, Arminja N. Kettenbach, Scott A. Gerber, Jennifer J. Loros, Jay C. Dunlap Sep 2014

Neurospora Wc-1 Recruits Swi/Snf To Remodel Frequency And Initiate A Circadian Cycle, Bin Wang, Arminja N. Kettenbach, Scott A. Gerber, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100–200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and …


Variation In Arabidopsis Flowering Time Associated With Cis-Regulatory Variation In Constans, Ulises Rosas, Yu Mei, Qiguang Xie, Joshua A. Banta, Royce W. Zhou, Gabriela Seufferheld, Silvia Gerard, Lucy Chou, Naeha Bhambhra, Jennifer Deane Parks, Jonathan M. Flowers, C. Robertson Mcclung, Yoshie Hanzawa, Michael D. Purugganan Apr 2014

Variation In Arabidopsis Flowering Time Associated With Cis-Regulatory Variation In Constans, Ulises Rosas, Yu Mei, Qiguang Xie, Joshua A. Banta, Royce W. Zhou, Gabriela Seufferheld, Silvia Gerard, Lucy Chou, Naeha Bhambhra, Jennifer Deane Parks, Jonathan M. Flowers, C. Robertson Mcclung, Yoshie Hanzawa, Michael D. Purugganan

Dartmouth Scholarship

The onset of flowering, the change from vegetative to reproductive development, is a major life history transition in flowering plants. Recent work suggests that mutations in cis-regulatory mutations should play critical roles in the evolution of this (as well as other) important adaptive traits, but thus far there has been little evidence that directly links regulatory mutations to evolutionary change at the species level. While several genes have previously been shown to affect natural variation in flowering time in Arabidopsis thaliana, most either show protein-coding changes and/or are found at low frequency (<5%). Here we identify and characterize natural variation in the cis-regulatory sequence in the …


Trip/Nopo E3 Ubiquitin Ligase Promotes Ubiquitylation Of Dna Polymerase Η, Heather A. Wallace, Julie A. Merkle, Michael C. Yu, Taloa G. Berg, Ethan Lee, Giovanni Bosco, Laura A. Lee Jan 2014

Trip/Nopo E3 Ubiquitin Ligase Promotes Ubiquitylation Of Dna Polymerase Η, Heather A. Wallace, Julie A. Merkle, Michael C. Yu, Taloa G. Berg, Ethan Lee, Giovanni Bosco, Laura A. Lee

Dartmouth Scholarship

We previously identified a Drosophila maternal effect-lethal mutant named ‘no poles’ (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of …


Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva Jan 2014

Redox-Dependent Stability, Protonation, And Reactivity Of Cysteine-Bound Heme Proteins, Fangfang Zhong, George P. Lisi, Daniel P. Collins, John H. Dawson, Ekaterina V. Pletneva

Dartmouth Scholarship

Cysteine-bound hemes are key components of many enzymes and biological sensors. Protonation (deprotonation) of the Cys ligand often accompanies redox transformations of these centers. To characterize these phenomena, we have engineered a series of Thr78Cys/Lys79Gly/Met80X mutants of yeast cytochrome c (cyt c) in which Cys78 becomes one of the axial ligands to the heme. At neutral pH, the protonation state of the coordinated Cys differs for the ferric and ferrous heme species, with Cys binding as a thiolate and a thiol, respectively. Analysis of redox-dependent stability and alkaline transitions of these model proteins, as well as comparisons to Cys …


Myb10 And Myb72 Are Required For Growth Under Iron-Limiting Conditions, Christine M. Palmer, Maria N. Hindt, Holger Schmidt, Stephan Clemens, Mary Lou Guerinot Nov 2013

Myb10 And Myb72 Are Required For Growth Under Iron-Limiting Conditions, Christine M. Palmer, Maria N. Hindt, Holger Schmidt, Stephan Clemens, Mary Lou Guerinot

Dartmouth Scholarship

Iron is essential for photosynthesis and is often a limiting nutrient for plant productivity. Plants respond to conditions of iron deficiency by increasing transcript abundance of key genes involved in iron homeostasis, but only a few regulators of these genes have been identified. Using genome-wide expression analysis, we searched for transcription factors that are induced within 24 hours after transferring plants to iron-deficient growth conditions. Out of nearly 100 transcription factors shown to be up-regulated, we identified MYB10 and MYB72 as the most highly induced transcription factors. Here, we show that MYB10 and MYB72 are functionally redundant and are required …


Recurrent Tissue-Specific Mtdna Mutations Are Common In Humans, David C. Samuels, Chun Li, Bingshan Li, Zhuo Song, Eric Torstenson, Hayley Boyd Clay, Antonis Rokas, Tricia A. Thornton-Wells, Jason H. Moore, Tia M. Hughes, Robert D. Hoffman, Jonathan L. Haines, Deborah G. Murdock, Douglas P. Mortlock, Scott M. Williams Nov 2013

Recurrent Tissue-Specific Mtdna Mutations Are Common In Humans, David C. Samuels, Chun Li, Bingshan Li, Zhuo Song, Eric Torstenson, Hayley Boyd Clay, Antonis Rokas, Tricia A. Thornton-Wells, Jason H. Moore, Tia M. Hughes, Robert D. Hoffman, Jonathan L. Haines, Deborah G. Murdock, Douglas P. Mortlock, Scott M. Williams

Dartmouth Scholarship

Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in …


Crosstalk Between The Circadian Clock And Innate Immunity In Arabidopsis, Chong Zhang, Qiguang Xie, Ryan G. Anderson, Gina Ng, Nicjolas C. Seitz, Thomas Peterson, C. Robertson Mcclung, John M. Mcdowell, Dongdong Kong, June M. Kwak, Hua Lu Jun 2013

Crosstalk Between The Circadian Clock And Innate Immunity In Arabidopsis, Chong Zhang, Qiguang Xie, Ryan G. Anderson, Gina Ng, Nicjolas C. Seitz, Thomas Peterson, C. Robertson Mcclung, John M. Mcdowell, Dongdong Kong, June M. Kwak, Hua Lu

Dartmouth Scholarship

Plants are frequently challenged by various pathogens. The circadian clock, which is the internal time measuring machinery, has been implicated in regulating plant responses to biotic cues. To better understand the role of the circadian clock in defense control, we tested disease resistance with Arabidopsis mutants disrupted in CCA1 and LHY , two key components of the circadian clock. We found that consistent with their contributions to the circadian clock, cca1 and lhy mutants synergistically affect resistance to both bacterial and oomycete pathogens. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also results in severe disease susceptibility. …


Elemental Concentrations In The Seed Of Mutants And Natural Variants Of Arabidopsis Thaliana Grown Under Varying Soil Conditions, Stephen C. Mcdowell, Garo Akmakjian, Chris Sladek, David Mendoza-Cozatl, Joe B. Morrissey, Nick Saini, Ron Mittler, Ivan Baxter, David E. Salt, John M. Ward, Julian I. Schroeder, Mary Lou Guerinot, Jeffrey F. Harper May 2013

Elemental Concentrations In The Seed Of Mutants And Natural Variants Of Arabidopsis Thaliana Grown Under Varying Soil Conditions, Stephen C. Mcdowell, Garo Akmakjian, Chris Sladek, David Mendoza-Cozatl, Joe B. Morrissey, Nick Saini, Ron Mittler, Ivan Baxter, David E. Salt, John M. Ward, Julian I. Schroeder, Mary Lou Guerinot, Jeffrey F. Harper

Dartmouth Scholarship

The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding …


Identification Of Genes Involved In Pseudomonas Aeruginosa Biofilm-Specific Resistance To Antibiotics, Li Zhang, Meredith Fritsch, Lisa Hammond, Ryan Landreville, Cristina Slatculescu, Antonio Colavita, Thien-Fah Mah Apr 2013

Identification Of Genes Involved In Pseudomonas Aeruginosa Biofilm-Specific Resistance To Antibiotics, Li Zhang, Meredith Fritsch, Lisa Hammond, Ryan Landreville, Cristina Slatculescu, Antonio Colavita, Thien-Fah Mah

Dartmouth Scholarship

Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic suscepti bility, we previously ident ified 3 genes or operons of P. aeruginosa UCBPP-PA14 ( ndvB , PA1875–1877 and tssC1 ) that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstrate that PA0756–0757 (encoding a putative two-component regulatory system), PA2070 and PA5033 (encoding hypothetical proteins of unknown function) display increased expression in biofilm cells and also have a role in …


Functional Analysis Of The Aspergillus Nidulans Kinome, Colin P. De Souza, Shahr B. Hashmi, Aysha H. Osmani, Peter Andrews, Carol S. Ringelberg, Jay C. Dunlap, Stephen A. Osmani Mar 2013

Functional Analysis Of The Aspergillus Nidulans Kinome, Colin P. De Souza, Shahr B. Hashmi, Aysha H. Osmani, Peter Andrews, Carol S. Ringelberg, Jay C. Dunlap, Stephen A. Osmani

Dartmouth Scholarship

The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. …


Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert Sep 2012

Arabidopsis Bhlh100 And Bhlh101 Control Iron Homeostasis Via A Fit-Independent Pathway, Alicia B. Sivitz, Victor Hermand, Catherine Curie, Grégory Vert

Dartmouth Scholarship

Iron deficiency induces a complex set of responses in plants, including developmental and physiological changes, to increase iron uptake from soil. In Arabidopsis, many transporters involved in the absorption and distribution of iron have been identified over the past decade. However, little is known about the signaling pathways and networks driving the various responses to low iron. Only the basic helix–loop–helix (bHLH) transcription factor FIT has been shown to control the expression of the root iron uptake machinery genes FRO2 and IRT1. Here, we characterize the biological role of two other iron-regulated transcription factors, bHLH100 and bHLH101, in iron homeostasis. …


Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole Sep 2012

Insights Into Mrnp Biogenesis Provided By New Genetic Interactions Among Export And Transcription Factors, Francisco Estruch, Christine Hodge, Natalia Gómez-Navarro, Lorena Peiró-Chova, Catherine V. Heath, Charles N. Cole

Dartmouth Scholarship

The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show …


Minor Pilins Of The Type Iv Pilus System Participate In The Negative Regulation Of Swarming Motility, S L. Kuchma, E. F. Griffin, G. A. O'Toole Aug 2012

Minor Pilins Of The Type Iv Pilus System Participate In The Negative Regulation Of Swarming Motility, S L. Kuchma, E. F. Griffin, G. A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa exhibits distinct surface-associated behaviors, including biofilm formation, flagellum-mediated swarming motility, and type IV pilus-driven twitching. Here, we report a role for the minor pilins, PilW and PilX, components of the type IV pilus assembly machinery, in the repression of swarming motility. Mutating either the pilW or pilX gene alleviates the inhibition of swarming motility observed for strains with elevated levels of the intracellular signaling molecule cyclic di-GMP (c-di-GMP) due to loss of BifA, a c-di-GMP-degrading phosphodiesterase. Blocking PilD peptidase-mediated processing of PilW and PilX renders the unprocessed proteins defective for pilus assembly but still functional in c-di-GMP-mediated swarming …


Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole Jul 2012

Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR …


Roles Of The Drosophila Sk Channel (Dsk) In Courtship Memory, Ahmad N. Abou Tayoun, Claudio Pikielny, Patrick J. Dolph Apr 2012

Roles Of The Drosophila Sk Channel (Dsk) In Courtship Memory, Ahmad N. Abou Tayoun, Claudio Pikielny, Patrick J. Dolph

Dartmouth Scholarship

A role for SK channels in synaptic plasticity has been very well-characterized. However, in the absence of simple genetic animal models, their role in behavioral memory remains elusive. Here, we take advantage of Drosophila melanogaster with its single SK gene (dSK) and well-established courtship memory assay to investigate the contribution of this channel to memory. Using two independent dSK alleles, a null mutation and a dominant negative subunit, we show that while dSK negatively regulates the acquisition of short-term memory 30 min after a short training session, it is required for normal long-term memory 24 h after extended …


Two-Component Elements Mediate Interactions Between Cytokinin And Salicylic Acid In Plant Immunity, Cristiana T. Argueso, Fernando J. Ferreira, Petra Epple, Jennifer P.C To, Claire E. Hutchison, G. Eric Schaller, Jeffrey L. Dangl, Joseph J. Kieber Jan 2012

Two-Component Elements Mediate Interactions Between Cytokinin And Salicylic Acid In Plant Immunity, Cristiana T. Argueso, Fernando J. Ferreira, Petra Epple, Jennifer P.C To, Claire E. Hutchison, G. Eric Schaller, Jeffrey L. Dangl, Joseph J. Kieber

Dartmouth Scholarship

Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, …


The Role Of Cax1 And Cax3 In Elemental Distribution And Abundance In Arabidopsis Seed, Tracy Punshon, Kendall Hirschi, Jian Yang, Antonio Lanzirotti, Barry Lai, Mary Lou Guerinot Jan 2012

The Role Of Cax1 And Cax3 In Elemental Distribution And Abundance In Arabidopsis Seed, Tracy Punshon, Kendall Hirschi, Jian Yang, Antonio Lanzirotti, Barry Lai, Mary Lou Guerinot

Dartmouth Scholarship

The ability to alter nutrient partitioning within plants cells is poorly understood. In Arabidopsis (Arabidopsis thaliana), a family of endomembrane cation exchangers (CAXs) transports Ca2+ and other cations. However, experiments have not focused on how the distribution and partitioning of calcium (Ca) and other elements within seeds are altered by perturbed CAX activity. Here, we investigate Ca distribution and abundance in Arabidopsis seed from cax1 and cax3 loss-of-function lines and lines expressing deregulated CAX1 using synchrotron x-ray fluorescence microscopy. We conducted 7- to 10-μm resolution in vivo x-ray microtomography on dry mature seed and 0.2-μm resolution x-ray …


Global Analysis Of Serine-Threonine Protein Kinase Genes In Neurospora Crassa, Gyungsoon Park, Jacqueline A. Servin, Gloria E. Turner, Lorena Altamirano Sep 2011

Global Analysis Of Serine-Threonine Protein Kinase Genes In Neurospora Crassa, Gyungsoon Park, Jacqueline A. Servin, Gloria E. Turner, Lorena Altamirano

Dartmouth Scholarship

Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes. Of these, 57% exhibited at least one growth or developmental phenotype, with a relatively large fraction (40%) possessing a defect in more than one trait. S/T kinase knockouts were subjected to chemical screening using a panel of eight chemical treatments, with …


The Pcdp1 Complex Coordinates The Activity Of Dynein Isoforms To Produce Wild-Type Ciliary Motility, Christen G. Dipetrillo, Elizabeth F. Smith Sep 2011

The Pcdp1 Complex Coordinates The Activity Of Dynein Isoforms To Produce Wild-Type Ciliary Motility, Christen G. Dipetrillo, Elizabeth F. Smith

Dartmouth Scholarship

Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are …


The Csc Is Required For Complete Radial Spoke Assembly And Wild-Type Ciliary Motility, Erin E. Dymek, Thomas Heuser, Daniela Nicastro, Elizabeth F. Smith May 2011

The Csc Is Required For Complete Radial Spoke Assembly And Wild-Type Ciliary Motility, Erin E. Dymek, Thomas Heuser, Daniela Nicastro, Elizabeth F. Smith

Dartmouth Scholarship

The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and …


Whole-Genome Sequencing Of Staphylococcus Aureus Strain Rn4220, A Key Laboratory Strain Used In Virulence Research, Identifies Mutations That Affect Not Only Virulence Factors But Also The Fitness Of The Strain, Dhanalakshmi Nair, Guido Memmi, David Hernandez, Jonathan Bard, Marie Beaume, Steven Gill, Patrice Francois, Ambrose L. Cheung Mar 2011

Whole-Genome Sequencing Of Staphylococcus Aureus Strain Rn4220, A Key Laboratory Strain Used In Virulence Research, Identifies Mutations That Affect Not Only Virulence Factors But Also The Fitness Of The Strain, Dhanalakshmi Nair, Guido Memmi, David Hernandez, Jonathan Bard, Marie Beaume, Steven Gill, Patrice Francois, Ambrose L. Cheung

Dartmouth Scholarship

Staphylococcus aureus RN4220, a cloning intermediate, is sometimes used in virulence, resistance, and metabolic studies. Using whole-genome sequencing, we showed that RN4220 differs from NCTC8325 and contains a number of genetic polymorphisms that affect both virulence and general fitness, implying a need for caution in using this strain for such studies.


Requirement For Golgi-Localized Pi(4)P In Fusion Of Copii Vesicles With Golgi Compartments, Andres Lorente-Rodriguez, Charles Barlowe Nov 2010

Requirement For Golgi-Localized Pi(4)P In Fusion Of Copii Vesicles With Golgi Compartments, Andres Lorente-Rodriguez, Charles Barlowe

Dartmouth Scholarship

The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) …


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …