Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 54

Full-Text Articles in Life Sciences

Dynamic Patterns Of Expression For Genes Regulating Cytokinin Metabolism And Signaling During Rice Inflorescence Development, Maria V. Yamburenko, Joseph J. Kieber, G. Eric Schaller Apr 2017

Dynamic Patterns Of Expression For Genes Regulating Cytokinin Metabolism And Signaling During Rice Inflorescence Development, Maria V. Yamburenko, Joseph J. Kieber, G. Eric Schaller

Dartmouth Scholarship

Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the …


Alcohol Discrimination And Preferences In Two Species Of Nectar-Feeding Primate, Samuel R. Gochman, Michael B. Brown, Nathaniel J. Dominy Jun 2016

Alcohol Discrimination And Preferences In Two Species Of Nectar-Feeding Primate, Samuel R. Gochman, Michael B. Brown, Nathaniel J. Dominy

Dartmouth Scholarship

Recent reports suggest that dietary ethanol, or alcohol, is a supplemental source of calories for some primates. For example, slow lorises (Nycticebus coucang) consume fermented nectars with a mean alcohol concentration of 0.6% (range: 0.0–3.8%). A similar behaviour is hypothesized for aye-ayes (Daubentonia madagascariensis) based on a single point mutation (A294V) in the gene that encodes alcohol dehydrogenase class IV (ADH4), the first enzyme to catabolize alcohol during digestion. The mutation increases catalytic efficiency 40-fold and may confer a selective advantage to aye-ayes that consume the nectar of Ravenala madagascariensis. It is uncertain, however, whether alcohol exists in this nectar …


Herpes Simplex Virus And Interferon Signaling Induce Novel Autophagic Clusters In Sensory Neurons, Sarah Katzenell, David A. Leib Feb 2016

Herpes Simplex Virus And Interferon Signaling Induce Novel Autophagic Clusters In Sensory Neurons, Sarah Katzenell, David A. Leib

Dartmouth Scholarship

Herpes simplex virus 1 (HSV-1) establishes lifelong infection in the neurons of trigeminal ganglia (TG), cycling between productive infection and latency. Neuronal antiviral responses are driven by type I interferon (IFN) and are crucial to controlling HSV-1 virulence. Autophagy also plays a role in this neuronal antiviral response, but the mechanism remains obscure. In this study, HSV-1 infection of murine TG neurons triggered unusual clusters of autophagosomes, predominantly in neurons lacking detectable HSV-1 antigen. Treatment of neurons with IFN-β induced a similar response, and cluster formation by infection or IFN treatment was dependent upon an intact IFN-signaling pathway. The autophagic …


Cyclic Di-Gmp-Mediated Repression Of Swarming Motility By Pseudomonas Aeruginosa Pa14 Requires The Motab Stator, S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, G. A. O'Toole Oct 2015

Cyclic Di-Gmp-Mediated Repression Of Swarming Motility By Pseudomonas Aeruginosa Pa14 Requires The Motab Stator, S. L. Kuchma, N. J. Delalez, L. M. Filkins, E. A. Snavely, J. P. Armitage, G. A. O'Toole

Dartmouth Scholarship

The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, …


Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine Sep 2015

Bypassing Iron Storage In Endodermal Vacuoles Rescues The Iron Mobilization Defect In The Natural Resistance Associated-Macrophage Protein3natural Resistance Associated-Macrophage Protein4 Double Mutant, Viviane Mary, Magali Schnell Ramos, Cynthia Gillet, Amanda L. Socha, Jerome Giraudat, Astrid Agorio, Sylvain Merlot, Colin Clairet, Sun A. Kim, Tracy Punshon, Mary Lou Guerinot, Sebastien Thomine

Dartmouth Scholarship

To improve seed iron (Fe) content and bioavailability, it is crucial to decipher the mechanisms that control Fe storage during seed development. In Arabidopsis (Arabidopsis thaliana) seeds, most Fe is concentrated in insoluble precipitates, with phytate in the vacuoles of cells surrounding the vasculature of the embryo. NATURAL RESISTANCE ASSOCIATED-MACROPHAGE PROTEIN3 (AtNRAMP3) and AtNRAMP4 function redundantly in Fe retrieval from vacuoles during germination. When germinated under Fe-deficient conditions, development of the nramp3nramp4 double mutant is arrested as a consequence of impaired Fe mobilization. To identify novel genes involved in seed Fe homeostasis, we screened an …


Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


Loregic: A Method To Characterize The Cooperative Logic Of Regulatory Factors, Daifeng Wang, Koon-Kiu Yan, Cristina Sisu, Chao Cheng, Joel Rozowsky, William Meyerson, Mark B. Gerstein Apr 2015

Loregic: A Method To Characterize The Cooperative Logic Of Regulatory Factors, Daifeng Wang, Koon-Kiu Yan, Cristina Sisu, Chao Cheng, Joel Rozowsky, William Meyerson, Mark B. Gerstein

Dartmouth Scholarship

The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target. We attempt to find the gate that best matches each triplet’s observed gene expression pattern across many conditions. …


Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss Feb 2015

Elimination Of Hydrogenase Active Site Assembly Blocks H2 Production And Increases Ethanol Yield In Clostridium Thermocellum, Ranjita Biswas, Tianyong Zheng, Daniel G. Olson, Lee R. Lynd, Adam M. Guss

Dartmouth Scholarship

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2 , and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl coenzyme A reduction to ethanol. Results: H2 production in C. thermocellum is encoded by four hydrogenases. Rather than delete each individually, we targeted hydrogenase maturase gene hydG, involved in converting the …


The Bifunctional Alcohol And Aldehyde Dehydrogenase Gene, Adhe, Is Necessary For Ethanol Production In Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Jonathan Lo, Tianyong Zheng, Shuen Hon, Daniel G. Olson, Lee Lynd Feb 2015

The Bifunctional Alcohol And Aldehyde Dehydrogenase Gene, Adhe, Is Necessary For Ethanol Production In Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Jonathan Lo, Tianyong Zheng, Shuen Hon, Daniel G. Olson, Lee Lynd

Dartmouth Scholarship

Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol …


Ploidy Variation In Multinucleate Cells Changes Under Stress, Cori A. Anderson, Samantha Roberts, Huaiying Zhang, Courtney M. Kelly, Alexxy Kendall, Changhwan Lee, John Gerstenberger, Aaron B. Koenig, Ruth Kabeche, Amy S. Gladfelter Jan 2015

Ploidy Variation In Multinucleate Cells Changes Under Stress, Cori A. Anderson, Samantha Roberts, Huaiying Zhang, Courtney M. Kelly, Alexxy Kendall, Changhwan Lee, John Gerstenberger, Aaron B. Koenig, Ruth Kabeche, Amy S. Gladfelter

Dartmouth Scholarship

Ploidy variation is found in contexts as diverse as solid tumors, drug resistance in fungal infection, and normal development. Altering chromosome or genome copy number supports adaptation to fluctuating environments but is also associated with fitness defects attributed to protein imbalances. Both aneuploidy and polyploidy can arise from multinucleate states after failed cytokinesis or cell fusion. The consequences of ploidy variation in syncytia are difficult to predict because protein imbalances are theoretically buffered by a common cytoplasm. We examined ploidy in a naturally multinucleate fungus, Ashbya gossypii. Using integrated lac operator arrays, we found that chromosome number varies substantially …


Functional Genomics Annotation Of A Statistical Epistasis Network Associated With Bladder Cancer Susceptibility, Ting Hu, Qinxin Pan, Angeline S. Andrew, Jillian M. Langer, Michael D. Cole, Craig R. Tomlinson, Margaret R. Karagas, Jason H. Moore Apr 2014

Functional Genomics Annotation Of A Statistical Epistasis Network Associated With Bladder Cancer Susceptibility, Ting Hu, Qinxin Pan, Angeline S. Andrew, Jillian M. Langer, Michael D. Cole, Craig R. Tomlinson, Margaret R. Karagas, Jason H. Moore

Dartmouth Scholarship

Background: Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. …


Gene Expression Studies For The Analysis Of Domoic Acid Production In The Marine Diatom Pseudo-Nitzschia Multiseries, Katie Boissonneault, Brooks M. Henningsen, Stephen S. Bates, Deborah L. Robertson, Sean Milton, Jerry Pelletier, Deborah A. Hogan, David E. Housman Nov 2013

Gene Expression Studies For The Analysis Of Domoic Acid Production In The Marine Diatom Pseudo-Nitzschia Multiseries, Katie Boissonneault, Brooks M. Henningsen, Stephen S. Bates, Deborah L. Robertson, Sean Milton, Jerry Pelletier, Deborah A. Hogan, David E. Housman

Dartmouth Scholarship

Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions.


Identification Of Cell Cycle–Regulated Genes Periodically Expressed In U2os Cells And Their Regulation By Foxm1 And E2f Transcription Factors, Gavin D. Grant, Lionel Brooks Iii, Xiaoyang Zhang, J. Matthew Mahoney, Viktor Martyanov, Tammara A. Wood, Gavin Sherlock, Chao Cheng, Michael L. Whitfield Sep 2013

Identification Of Cell Cycle–Regulated Genes Periodically Expressed In U2os Cells And Their Regulation By Foxm1 And E2f Transcription Factors, Gavin D. Grant, Lionel Brooks Iii, Xiaoyang Zhang, J. Matthew Mahoney, Viktor Martyanov, Tammara A. Wood, Gavin Sherlock, Chao Cheng, Michael L. Whitfield

Dartmouth Scholarship

We identify the cell cycle–regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle–regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle–regulated genes. FOXM1 is bound to cell cycle–regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly …


Subset Of Heat-Shock Transcription Factors Required For The Early Response Of Arabidopsis To Excess Light, Hou-Sung Jung, Peter A. Crisp, Gonzalo M. Estavillo, Benjamin Cole Aug 2013

Subset Of Heat-Shock Transcription Factors Required For The Early Response Of Arabidopsis To Excess Light, Hou-Sung Jung, Peter A. Crisp, Gonzalo M. Estavillo, Benjamin Cole

Dartmouth Scholarship

Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic …


Identification Of Cytokinin-Responsive Genes Using Microarray Meta-Analysis And Rna-Seq In Arabidopsis, Apurva Bhargava, Ivory Clabaugh, Jenn P. To, Bridey B. Maxwell, Yi-Hsuan Chiang, G. Eric Schaller, Ann Loraine, Joseph J. Kieber May 2013

Identification Of Cytokinin-Responsive Genes Using Microarray Meta-Analysis And Rna-Seq In Arabidopsis, Apurva Bhargava, Ivory Clabaugh, Jenn P. To, Bridey B. Maxwell, Yi-Hsuan Chiang, G. Eric Schaller, Ann Loraine, Joseph J. Kieber

Dartmouth Scholarship

Cytokinins are N6-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been …


Identification Of Genes Involved In Pseudomonas Aeruginosa Biofilm-Specific Resistance To Antibiotics, Li Zhang, Meredith Fritsch, Lisa Hammond, Ryan Landreville, Cristina Slatculescu, Antonio Colavita, Thien-Fah Mah Apr 2013

Identification Of Genes Involved In Pseudomonas Aeruginosa Biofilm-Specific Resistance To Antibiotics, Li Zhang, Meredith Fritsch, Lisa Hammond, Ryan Landreville, Cristina Slatculescu, Antonio Colavita, Thien-Fah Mah

Dartmouth Scholarship

Pseudomonas aeruginosa is a key opportunistic pathogen characterized by its biofilm formation ability and high-level multiple antibiotic resistance. By screening a library of random transposon insertion mutants with an increased biofilm-specifc antibiotic suscepti bility, we previously ident ified 3 genes or operons of P. aeruginosa UCBPP-PA14 ( ndvB , PA1875–1877 and tssC1 ) that do not affect biofilm formation but are involved in biofilm-specific antibiotic resistance. In this study, we demonstrate that PA0756–0757 (encoding a putative two-component regulatory system), PA2070 and PA5033 (encoding hypothetical proteins of unknown function) display increased expression in biofilm cells and also have a role in …


Functional Analysis Of The Aspergillus Nidulans Kinome, Colin P. De Souza, Shahr B. Hashmi, Aysha H. Osmani, Peter Andrews, Carol S. Ringelberg, Jay C. Dunlap, Stephen A. Osmani Mar 2013

Functional Analysis Of The Aspergillus Nidulans Kinome, Colin P. De Souza, Shahr B. Hashmi, Aysha H. Osmani, Peter Andrews, Carol S. Ringelberg, Jay C. Dunlap, Stephen A. Osmani

Dartmouth Scholarship

The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. …


Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson Jan 2013

Reconstruction Of Family-Level Phylogenetic Relationships Within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes, Malcolm S. Hill, April Hill, Jose Lopez, Kevin J. Peterson

Dartmouth Scholarship

Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.

Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the …


Candida Albicans Induces Arginine Biosynthetic Genes In Response To Host-Derived Reactive Oxygen Species, Claudia Jimenez-Lopez, John R. Collette, Kimberly M. Brothers, Kelly M. Shepardson, Robert A. Kramer Jan 2013

Candida Albicans Induces Arginine Biosynthetic Genes In Response To Host-Derived Reactive Oxygen Species, Claudia Jimenez-Lopez, John R. Collette, Kimberly M. Brothers, Kelly M. Shepardson, Robert A. Kramer

Dartmouth Scholarship

The interaction of Candida albicans with phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages. Using single-cell reporters, we showed here that arginine biosynthetic genes are induced specifically in phagocytosed cells. This induction is …


Genome Sequence Of The Mesophilic Thermotogales Bacterium Mesotoga Prima Mesg1.Ag.4.2 Reveals The Largest Thermotogales Genome To Date, Olga Zhaxybayeva, Kristen S. Swithers, Julia Foght, Anna G. Green, David Bruce, Chris Detter, Shunsheng Han, Hazuki Teshima, James Han, Tanja Woyke, Sam Pitluck, Matt Nolan, Natalia Ivanova, Amrita Pati, Miriam L. Land, Marlena Dlutek, W Ford Doolittle, Kenneth M. Noll, Camilla L. Nesbo Jul 2012

Genome Sequence Of The Mesophilic Thermotogales Bacterium Mesotoga Prima Mesg1.Ag.4.2 Reveals The Largest Thermotogales Genome To Date, Olga Zhaxybayeva, Kristen S. Swithers, Julia Foght, Anna G. Green, David Bruce, Chris Detter, Shunsheng Han, Hazuki Teshima, James Han, Tanja Woyke, Sam Pitluck, Matt Nolan, Natalia Ivanova, Amrita Pati, Miriam L. Land, Marlena Dlutek, W Ford Doolittle, Kenneth M. Noll, Camilla L. Nesbo

Dartmouth Scholarship

Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it …


Live-Cell Monitoring Of Periodic Gene Expression In Synchronous Human Cells Identifies Forkhead Genes Involved In Cell Cycle Control, Gavin D. Grant, Joshua Gamsby, Viktor Martyanov, Lionel Brooks, Lacy K. George, J. Matthew Mahoney, Jennifer J. Loros, Jay C. Dunlap, Michael L. Whitfield Jun 2012

Live-Cell Monitoring Of Periodic Gene Expression In Synchronous Human Cells Identifies Forkhead Genes Involved In Cell Cycle Control, Gavin D. Grant, Joshua Gamsby, Viktor Martyanov, Lionel Brooks, Lacy K. George, J. Matthew Mahoney, Jennifer J. Loros, Jay C. Dunlap, Michael L. Whitfield

Dartmouth Scholarship

We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle …


Dcm Methylation Is Detrimental To Plasmid Transformation In Clostridium Thermocellum, Adam M. Guss, Daniel G. Olson, Nicky C. Caiazza, Lee R. Lynd May 2012

Dcm Methylation Is Detrimental To Plasmid Transformation In Clostridium Thermocellum, Adam M. Guss, Daniel G. Olson, Nicky C. Caiazza, Lee R. Lynd

Dartmouth Scholarship

Background: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. Results: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam + dcm + E. coli strain, pAMG206 transforms C. thermocellum 100-fold better …


Global Analysis Of Serine-Threonine Protein Kinase Genes In Neurospora Crassa, Gyungsoon Park, Jacqueline A. Servin, Gloria E. Turner, Lorena Altamirano Sep 2011

Global Analysis Of Serine-Threonine Protein Kinase Genes In Neurospora Crassa, Gyungsoon Park, Jacqueline A. Servin, Gloria E. Turner, Lorena Altamirano

Dartmouth Scholarship

Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes. Of these, 57% exhibited at least one growth or developmental phenotype, with a relatively large fraction (40%) possessing a defect in more than one trait. S/T kinase knockouts were subjected to chemical screening using a panel of eight chemical treatments, with …


Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks Aug 2011

Mutant Alcohol Dehydrogenase Leads To Improved Ethanol Tolerance In Clostridium Thermocellum, Steven D. Brown, Adam M. Guss, Tatiana V. Karpinets, Jerry M. Parks

Dartmouth Scholarship

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. …


Type Ii Protein Arginine Methyltransferase 5 (Prmt5) Is Required For Circadian Pperiod Determination In Arabidopsis Thaliana, Sunghyun Hong, Hae-Ryoung Song, Kerry Lutz, Randall A. Kerstetter, Todd P. Michael, C. Robertson Mcclung Dec 2010

Type Ii Protein Arginine Methyltransferase 5 (Prmt5) Is Required For Circadian Pperiod Determination In Arabidopsis Thaliana, Sunghyun Hong, Hae-Ryoung Song, Kerry Lutz, Randall A. Kerstetter, Todd P. Michael, C. Robertson Mcclung

Dartmouth Scholarship

Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). …


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Functional Characterization Of Mat1-1-Specific Mating-Type Genes In The Homothallic Ascomycete Sordaria Macrospora Provides New Insights Into Essential And Nonessential Sexual Regulators, V. Klix, M. Nowrousian, C. Ringelberg, J. J. Loros Apr 2010

Functional Characterization Of Mat1-1-Specific Mating-Type Genes In The Homothallic Ascomycete Sordaria Macrospora Provides New Insights Into Essential And Nonessential Sexual Regulators, V. Klix, M. Nowrousian, C. Ringelberg, J. J. Loros

Dartmouth Scholarship

Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed …


Mir319a Targeting Of Tcp4 Is Critical For Petal Growth And Development In Arabidopsis, Anwesha Nag, Stacey King, Thomas Jack Dec 2009

Mir319a Targeting Of Tcp4 Is Critical For Petal Growth And Development In Arabidopsis, Anwesha Nag, Stacey King, Thomas Jack

Dartmouth Scholarship

In a genetic screen in a drnl-2 background, we isolated a loss-of-function allele in miR319a (miR319a129). Previously, miR319a has been postulated to play a role in leaf development based on the dramatic curled-leaf phenotype of plants that ectopically express miR319a (jaw-D). miR319a129 mutants exhibit defects in petal and stamen development; petals are narrow and short, and stamens exhibit defects in anther development. The miR319a129 loss-of-function allele contains a single-base change in the middle of the encoded miRNA, which reduces the ability of miR319a to recognize targets. Analysis of the expression patterns of the …


Insulin Stimulates The Phosphorylation Of The Exocyst Protein Sec8 In Adipocytes, Patrick D. Lyons, Grantley R. Peck, Arminja N. Kettenbach, Scott A. Gerber, Liya Roudaia, Gustav E. Lienhard Aug 2009

Insulin Stimulates The Phosphorylation Of The Exocyst Protein Sec8 In Adipocytes, Patrick D. Lyons, Grantley R. Peck, Arminja N. Kettenbach, Scott A. Gerber, Liya Roudaia, Gustav E. Lienhard

Dartmouth Scholarship

The signal transduction pathway leading from the insulin receptor to stimulate the fusion of vesicles containing the glucose transporter GLUT4 with the plasma membrane in adipocytes and muscle cells is not completely understood. Current evidence suggests that in addition to the Rab GTPase-activating protein AS160, at least one other substrate of Akt (also called protein kinase B), which is as yet unidentified, is required. Sec8 is a component of the exocyst complex that has been previously implicated in GLUT4 trafficking. In the present study, we report that insulin stimulates the phosphorylation of Sec8 on Ser-32 in 3T3-L1 adipocytes. On the …


Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An Jun 2009

Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An

Dartmouth Scholarship

Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe3+; these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to β-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green …