Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Life Sciences

Land Cover Types Of The Las Vegas Wash, Nevada, Seth A. Shanahan, Dave Silverman, Art Ehrenberg Sep 2007

Land Cover Types Of The Las Vegas Wash, Nevada, Seth A. Shanahan, Dave Silverman, Art Ehrenberg

Publications (WR)

Vegetation type, extent, continuity, and structure are some of the most important factors that determine wildlife diversity and distribution. Other contributing factors that shape wildlife communities include disturbance, competition, climate, and water availability. Because vegetation communities in the southwestern U.S. gradate sharply along zones of soil moisture, wildlife are often restricted to specific vegetation types. Along the Las Vegas Wash (Wash), Nevada, more than 250 wildlife species have been documented to occur in distinct wetland, riparian, and upland vegetation types. Recent studies have investigated the diversity and distribution of amphibians, birds, fishes, mammals, and reptiles (Shanahan 2005, 2005a, Van Dooremolen …


Water Element Of The Las Vegas 2020 Master Plan, City Of Las Vegas, Nevada Jan 2005

Water Element Of The Las Vegas 2020 Master Plan, City Of Las Vegas, Nevada

Publications (WR)

Development in the city of Las Vegas is guided by the goals, objectives and policies outlined in the 2020 Master Plan, and elements of the Plan such as the Public Safety Element, which contain goals and policies designed to protect and enhance groundwater drainage. Additionally, the city of Las Vegas Strategic Plan has the following goals, strategies, and performance measures:

Goal: Encourage conservation and optimization of natural resources.

Strategy: Identify appropriate water conservation strategies and priorities.

Strategy: Explore best development and urban design practices for environmental stewardship, energy and water conservation, and efficient use of the land.

Performance Measure: Adoption …


Integrated Weed Management Plan For The Lower Las Vegas Wash, Elizabeth Bickmore Sep 2003

Integrated Weed Management Plan For The Lower Las Vegas Wash, Elizabeth Bickmore

Publications (WR)

The Las Vegas Wash (Wash) is the primary drainage for the metropolitan Las Vegas Valley, eventually finding its way into the Colorado River watershed system. Pursuant to the recommendations of the Water Quality Citizens Advisory Committee, the Las Vegas Wash Coordination Committee (LVWCC) was formed in 1998 to develop a comprehensive plan for the long-term stabilization and management of the Wash. Consisting of representatives from 28 government agencies, businesses, environmental groups and citizens, the LVWCC formulated the Las Vegas Wash Comprehensive Adaptive Management Plan (CAMP) and designated the Southern Nevada Water Authority (SNWA) as the lead agency for the implementation …


Comparison Of Water Quality, Zooplankton Density, And Cover In Razorback Sucker (Xyrauchen Texanus [Abbott]) Spawning Areas Of Lake Mead And Lake Mohave, Michael E. Golden, Paul B. Holden, Southern Nevada Water Authority Jul 2002

Comparison Of Water Quality, Zooplankton Density, And Cover In Razorback Sucker (Xyrauchen Texanus [Abbott]) Spawning Areas Of Lake Mead And Lake Mohave, Michael E. Golden, Paul B. Holden, Southern Nevada Water Authority

Publications (WR)

Las Vegas Bay and Echo Bay in Lake Mead have small, self-sustaining populations of razorback sucker (Xyrauchen texanus [Abbot]). Increased productivity and cover have been hypothesized as reasons for successful recruitment of razorback sucker in Lake Mead. Conversely, reproduction has been documented on Lake Mohave, another lower Colorado River reservoir, but no recruitment has been observed. In 2000, BIO-WEST, Inc. was contracted by the Southern Nevada Water Authority to design and implement a study to examine nutrient levels, zooplankton density, and cover in areas with and without razorback sucker recruitment success. We sampled Echo Bay, Las Vegas Bay, and …


Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey Apr 1997

Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey

Publications (WR)

Las Vegas Wash, a natural wash east of the city of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from three sewage treatment plants to Lake Mead. The Wash provides nearly the only surface water outlet for the entire 2,193 mi2 of Las Vegas Valley. A drainage area of 1,586 mi2 contributes directly to the Wash through surface flow which is channeled to Las Vegas Bay of Lake Mead, while drainage of the remaining 607 mi2 is presumably subsurface and may drain toward Las Vegas Wash.

In the 1930's and 1940's, sewage treatment plants were …


The Influence Of The Wastewater Drainage From The Las Vegas Valley On The Limnology Of Boulder Basin, Lake Mead, Nevada-Arizona, James F. Labounty, Michael J. Horn, Bureau Of Reclamation Jan 1997

The Influence Of The Wastewater Drainage From The Las Vegas Valley On The Limnology Of Boulder Basin, Lake Mead, Nevada-Arizona, James F. Labounty, Michael J. Horn, Bureau Of Reclamation

Publications (WR)

Lake Mead, Colorado River, Arizona-Nevada, is one of the most heavily used reservoirs in the western United States, providing abundant recreational opportunities as well as downstream domestic and agricultural water for over 22 million users. Based on average nutrient levels and productivity, Lake Mead is classified as mildly mesotrophic. The interflow of the Colorado River dominates the limnology of much of the 106 km-long reservoir, and may still be identified at Hoover Dam under certain conditions. The lower basin of Lake Mead ending at Hoover Dam is known as Boulder Basin and is near the Las Vegas metropolitan area. Las …


Synthetic Organic Compounds: Las Vegas Wash And Lake Mead, National Water Quality Assessment Program (Nawqa): Nevada Basin And Range Jan 1996

Synthetic Organic Compounds: Las Vegas Wash And Lake Mead, National Water Quality Assessment Program (Nawqa): Nevada Basin And Range

Publications (WR)

The Nevada Basin and Range (NVBR) study unit of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program is investigating the status of, trends in, and factors affecting water quality in the Las Vegas area. A principal objective of the investigation is to assess the effects of urbanization on the quality of area water resources.

Las Vegas Wash is the surface-water outlet for the Las Vegas area. The wash transports stormwater runoff, shallow ground-water discharge, and tertiary-treated sewage effluent from the Las Vegas area to Las Vegas Bay of Lake Mead on the Colorado River. Most of the flow—about 96 …


Baseline Water Quality Data Inventory And Analysis: Lake Mead National Recreation Area, Volume Ii Of Ii, National Park Service Dec 1994

Baseline Water Quality Data Inventory And Analysis: Lake Mead National Recreation Area, Volume Ii Of Ii, National Park Service

Publications (WR)

This document presents the results of surface-water-quality data retrievals for Lake Mead National Recreation Area (LAME) from five of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) database management system; (2) River Reach File (RF3); (3) Industrial Facilities Discharge (IFD); (4) Drinking Water Supplies (DRINKS); and (5) Flow Gages (GAGES). This document is one product resulting from a cooperative contractual endeavor between the National Park Service's Servicewide Inventory and Monitoring Program, the National Park Service's Water Resources Division (WRD), and Horizon Systems Corporation to retrieve, format, and analyze water quality data for all units …


Baseline Water Quality Data Inventory And Analysis: Lake Mead National Recreation Area, Volume I Of Ii, National Park Service Dec 1994

Baseline Water Quality Data Inventory And Analysis: Lake Mead National Recreation Area, Volume I Of Ii, National Park Service

Publications (WR)

This document presents the results of surface-water-quality data retrievals for Lake Mead National Recreation Area (LAME) from five of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) database management system; (2) River Reach File (RF3); (3) Industrial Facilities Discharge (IFD); (4) Drinking Water Supplies (DRINKS); and (5) Flow Gages (GAGES). This document is one product resulting from a cooperative contractual endeavor between the National Park Service's Servicewide Inventory and Monitoring Program, the National Park Service's Water Resources Division (WRD), and Horizon Systems Corporation to retrieve, format, and analyze water quality data for all units …


Study Of Existing Information Concerning Water Quality Within Lake Mead, Vicki Scharnhorst, Southern Nevada Water Authority Feb 1994

Study Of Existing Information Concerning Water Quality Within Lake Mead, Vicki Scharnhorst, Southern Nevada Water Authority

Publications (WR)

The purpose of Task 010A15M of the Southern Nevada Water Authority (SNWA) Treatment and Transmission Facility (TTF) contract is to conduct a study of existing information concerning water quality within Lake Mead and identify additional water quality studies that are needed to supplement existing data.

The objective of this task is not to discuss treatability of the raw water source; this is addressed by Task 010A18M, "Define Water Treatment Requirements." In addition, a narrative on the effect of pending Safe Drinking Water Act amendments and a determination of treated water quality goals is included in Task 010A16M, "Review Safe Drinking …


Identification Of Tire Leachate Toxicants And A Risk Assessment Of Water Quality Effects Using Tire Reefs In Canals, S. M. Nelson, G. Mueller, D. C. Hemphill, U.S. Bureau Of Reclamation Jan 1994

Identification Of Tire Leachate Toxicants And A Risk Assessment Of Water Quality Effects Using Tire Reefs In Canals, S. M. Nelson, G. Mueller, D. C. Hemphill, U.S. Bureau Of Reclamation

Publications (WR)

Cover is an important component of aquatic habitat and fisheries management. Fisheries biologists often try to improve habitats through the addition of natural and artificial material to improve cover diversity and complexity. Habitat-improvement programs range from submerging used Christmas trees to more complex programs using sophisticated artificial habitat modules. Used automobile tires have been employed in the large scale construction of reefs and fish attractors in marine environments and to a lesser extent in freshwater and have been recognized as a durable, inexpensive and long-lasting material which benefits fishery communities.

Recent studies by the U.S. Bureau of Reclamation have quantified …


Littoral And Limnetic Zooplankton Communities In Lake Mead, Nevada-Arizona, Usa, Patrick J. Sollberger, Larry J. Paulson Jan 1991

Littoral And Limnetic Zooplankton Communities In Lake Mead, Nevada-Arizona, Usa, Patrick J. Sollberger, Larry J. Paulson

Publications (WR)

Zooplankton were collected from adjacent littoral and limnetic sites in Lake Mead, Nevada-Arizona, USA. Limnetic species dominated both littoral and limnetic zooplankton communities; littoral species rarely exceeded 2% of monthly total zooplankton densities. Low species richness of littoral taxa and high similarity in species composition between littoral and limnetic habitats appeared to result from uniform horizontal physical and chemical environments, due to horizontal mixing, and from the absence aquatic macrophytes.

Significant differences in spatial distribution occurred in phytoplankton biomass, total zooplankton density, and fish "abundances; highest concentrations of these factors occurred nearest an inflow high in nutrients and progressively declined …


Lake Mead Nutrient Enhancement Project, Peter D. Vaux, Larry J. Paulson, Nevada Department Of Wildlife, National Oceanic And Atmospheric Administration Dec 1990

Lake Mead Nutrient Enhancement Project, Peter D. Vaux, Larry J. Paulson, Nevada Department Of Wildlife, National Oceanic And Atmospheric Administration

Publications (WR)

The Lake Mead Fertilization Project is a research program designed to investigate the potential for using large-scale artificial fertilization to enhance the game fisheries of this reservoir through an increase in the population of threadfin shad, the system's primary forage species. A substantial decline in the population of largemouth bass, together with poor condition of adult striped bass, are the two major issues affecting the Lake Mead game fisheries. Both issues have been hypothesized to be a result of an inadequate amount of forage in the reservoir. Previous studies have in turn suggested that a major factor limiting the shad …


Enhancement And Monitoring Of The Procambarus Clarkii Population In Lake Mead, Mikell Beth Hager May 1990

Enhancement And Monitoring Of The Procambarus Clarkii Population In Lake Mead, Mikell Beth Hager

Publications (WR)

Procambarus clarkii are found in extremely low numbers throughout Lake Mead, AZ-NV. The crayfish are an important dietary component for game fish. Enhancement of the crayfish population would broaden the fishery forage base. Crayfish were stocked and monitored in a study cove on Saddle Island to determine if the Procambarus clarkii population could be enhanced. A trapping survey of the area after the following reproductive season yielded low numbers of crayfish. A comparison of pre-stocking and post-stocking catch per trap day (CPTD) values revealed no significant increase in the population. Procambarus clarkii growth is limited by environmental factors in Lake …


Effects Of Ambient Lake Mohave Temperatures On Development, Oxygen Consumption, And Hatching Success Of The Razorback Sucker, Michael A. Bozek, Larry J. Paulson, Gene R. Wilde Jan 1990

Effects Of Ambient Lake Mohave Temperatures On Development, Oxygen Consumption, And Hatching Success Of The Razorback Sucker, Michael A. Bozek, Larry J. Paulson, Gene R. Wilde

Publications (WR)

Spawning of razorback suckers, Xyrauchen texanus, in Lake Mohave occurred from 10-22° C and larvae were collected at water temperatures from 10-15° C in 1982 and 1983. In the laboratory, hatching success was similar from 12-20° C, but reduced hatching success was found at 10° C while none hatched at 8°C. Development rate and oxygen consumption were positively related to incubation temperature. Direct effects of ambient Lake Mohave water temperatures on hatching success of razorback sucker embryos are considered minimal. Historical spawning temperatures for the species are hypothesized based upon successful incubation temperatures and comparison to the white sucker, …


Temporal And Spatial Patterns Of Abundance Of Age 0 Threadfin Shad (Dorosoma Petenense) In Overton Arm, Lake Mead, William Lee Pelle Jun 1989

Temporal And Spatial Patterns Of Abundance Of Age 0 Threadfin Shad (Dorosoma Petenense) In Overton Arm, Lake Mead, William Lee Pelle

Publications (WR)

Temporal and spatial patterns of age 0 threadfin shad (Dorosoma petenense) abundance and growth, in the Overton Arm of Lake Mead, were examined to evaluate the effects of resource availability on the young fish. This was part of a larger, game fishery enhancement study (Lake Mead Fertilization Project), designed to assess feasability of increasing survivorship of larval/juvenile shad by boosting phosphate levels, thereby increasing algal and zooplankton biomass, during the shad spawning period. Shad are the primary forage base for the striped bass (Morone saxatilis) and black bass (Macropterus salmoides) fisheries. Weekly samples were …


Limnological Monitoring Data For Lake Mead During 1988, Suzanne E. Leavitt, Larry J. Paulson, State Of Nevada: Division Of Environmental Protection Apr 1989

Limnological Monitoring Data For Lake Mead During 1988, Suzanne E. Leavitt, Larry J. Paulson, State Of Nevada: Division Of Environmental Protection

Publications (WR)

Limnological monitoring was conducted in Las Vegas Bay and Boulder Basin from April to December of 1988. The purpose of the monitoring was to (i) document possible changes in water quality resulting from decreased phosphorus loading and increased ammonia in Las Vegas Wash, and (ii) establish a data base for evaluating the adequacy of water quality standards.


Red Swamp Crayfish Ecology In Lake Mead, Suzanne E. Leavitt, Jennifer Stephens Haley, Mikell Hager, Donald H. Baepler, Nevada Department Of Wildlife Mar 1989

Red Swamp Crayfish Ecology In Lake Mead, Suzanne E. Leavitt, Jennifer Stephens Haley, Mikell Hager, Donald H. Baepler, Nevada Department Of Wildlife

Publications (WR)

Red swamp crayfish (Procambarus clarkii) were trapped in Flamingo Wash, an urban wash of Las Vegas, during four periods of 1988. Life history and reproductive success were determined. The trapped crayfish were marked and released into a study cove in Lake Mead as part of an experimental stocking program. Retrap data from the study cove were used to determine life history, habitat preferences, and movement patterns of the stocked crayfish. In addition, a literature search was done on red swamp crayfish ecology, including food preferences, life history, habitat preferences and fish predation.


Changes In The Morphometry Of Las Vegas Wash And The Impact On Water Quality, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation Jan 1988

Changes In The Morphometry Of Las Vegas Wash And The Impact On Water Quality, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation

Publications (WR)

Las Vegas Wash, a natural wash east of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from two sewage treatment plants to Lake Mead. Over 80 percent of the normal discharge of approximately 3.4 m3/s (120 ft3/s) consists of effluent from the City of Las Vegas and Clark County sewage treatment plants. Beginning in the 1950s, a large wetland area developed along the wash that supported waterfowl populations and contributed to some water quality transformations. Heavy rains and subsequent flooding in the area in 1983 and 1984 resulted in erosion and channelization that greatly …


Fish Aid: The Lake Mead Fertilization Project, Richard Axler, Larry Paulson, Peter Vaux, Patrick Sollberger, Donald H. Baepler Jan 1988

Fish Aid: The Lake Mead Fertilization Project, Richard Axler, Larry Paulson, Peter Vaux, Patrick Sollberger, Donald H. Baepler

Publications (WR)

Sport fishing at Lake Mead in Nevada and Arizona is a resource valued at nearly $100 million per year to southern Nevada. During the past two decades, salmonids, mostly trout, have disappeared entirely, the largemouth bass catch has drastically declined despite greater fishing pressure, and the condition factors for striped bass have steadily deteriorated. It appears that a major reduction in phosphorus loading caused by the upstream impoundment of the Colorado River to form Lake Powell in 1963 and advanced wastewater treatment removal of phosphorus from domestic wastewater inflows in 1981 are the principal factors responsible for decreased production at …


Lake Mead Prefertilization Study: Preliminary Nutrient Enhancement Studies In Lake Mead, Richard P. Axler, Larry J. Paulson, Patrick J. Sollberger, Donald H. Baepler, U.S. Bureau Of Reclamation Nov 1987

Lake Mead Prefertilization Study: Preliminary Nutrient Enhancement Studies In Lake Mead, Richard P. Axler, Larry J. Paulson, Patrick J. Sollberger, Donald H. Baepler, U.S. Bureau Of Reclamation

Publications (WR)

Studies conducted by the University of Nevada-Las Vegas (UNLV), the Nevada Department of Wildlife (NDOW), the Arizona Game and Fish Department (AGFD), The Nevada Division of Environmental Protection (NDEP), and the United States Bureau of Reclamation (USBR) have identified decreased algal production as a major factor involved in the decline of the Lake Mead sport fishery. Phosphorus-laden silt particles in the Colorado River have been sedimenting out in Lake Powell since the completion of Glen Canyon Dam 286 miles upstream in 1963. This sharp decrease in phosphorus loading to Lake Mead (>5000 tons per year) has resulted in decreased …


Benthic Invertebrates And Crayfish Of Lake Mead, Susan K. Peck, William L. Pratt, James E. Pollard, Larry J. Paulson, Donald H. Baepler Sep 1987

Benthic Invertebrates And Crayfish Of Lake Mead, Susan K. Peck, William L. Pratt, James E. Pollard, Larry J. Paulson, Donald H. Baepler

Publications (WR)

The objectives of this study were to:

1. Establish baseline densities of benthic invertebrates and relative abundance of crayfish in Lake Mead.

2. Evaluate the distributions of benthic organisms and crayfish in relation to existing habitat conditions and 1imnological characteristics of Lake Mead.

3. Measure seasonal changes in abundances of benthic organisms and crayfish in Lake Mead.

4. Compare observations of Procambarus clarkii life history in Lake Mead to reports from other aquatic systems.

5. Evaluate the importance of benthic organisms and crayfish as food sources for game fish in Lake Mead.


Analysis Of The Water-Quality Standards Proposed By The Nevada Division Of Environmental Protection, City Of Las Vegas, Nevada Aug 1987

Analysis Of The Water-Quality Standards Proposed By The Nevada Division Of Environmental Protection, City Of Las Vegas, Nevada

Publications (WR)

The Nevada Division of Environmental Protection (DEP) has proposed water-quality standards, applicable to Las Vegas Bay and Lake Mead, for (1) chlorophyll, (2) un-ionized ammonia, and (3) pH.

We have concluded that the proposed standards are unlikely to protect or improve water quality in Lake Mead. The proposed chlorophyll standard:

May harm the fishery. Lakes with more chlorophyll have greater fish production.

Will not improve clarity. Chlorophyll concentrations above 30 ug/1 have little effect on clarity.

Will not protect against scums or dominance by blue-green algae. Lake Mead shows no consistent relationship between chlorophyll and scums or blue-green dominance.

Will …


Estimation Of Food Limitation In Daphnia Pulex From Boulder Basin, Lake Mead, Thomas Mark Bartanen Aug 1987

Estimation Of Food Limitation In Daphnia Pulex From Boulder Basin, Lake Mead, Thomas Mark Bartanen

Publications (WR)

In February, 1982 I began a year-long study to determine if growth and reproduction in Daphnia Pulex were limited by the amount of food available in Boulder Basin, Lake Mead. To determine this, I made monthly collections of Daphnia Pulex and natural lake seston from an already established station in Boulder Basin. I cultured the Daphnia Pulex under simulated field conditions in a flow-through feeding apparatus using four different food regimes; 1-natural lake seston filtered through 80 um mesh to remove other zooplankton, 2-lake seston (as above) with an enrichment of 103 cells-ml-1 of Chlamydomonas reinhardti, 3-lake …


Comparison Of Littoral And Limnetic Zooplankton Communities Of Lake Mead, Patrick Joseph Sollberger May 1987

Comparison Of Littoral And Limnetic Zooplankton Communities Of Lake Mead, Patrick Joseph Sollberger

Publications (WR)

Microfaunal communities were studied in littoral (inshore) and limnetic (offshore) areas of the lower basin in Lake Mead to compare species composition and abundance between the two zones. Planktonic forms (zooplankton) dominated inshore and offshore habitats and the occurrence of littoral species was low. Therefore, high similarity in zooplankton species composition was found among all sampling stations. This was perhaps due to two main factors: (i) the physical and chemical environment among the stations were very similar and (ii) the lack of aquatic vegetation in the littoral zone reduced the occurrence of littoral species.

Although species composition did not vary …


A Proposal To Fertilize The Overton Arm And Gregg Basin Areas Of Lake Mead, Larry J. Paulson Nov 1984

A Proposal To Fertilize The Overton Arm And Gregg Basin Areas Of Lake Mead, Larry J. Paulson

Publications (WR)

Several limnological studies have been conducted in Lake Mead during the past decade. The recent studies clearly show that most of Lake Mead is deficient in nutrients, especially phosphorus, and very low in productivity. The reservoir-wide average total phosphorus concentration for 1981 - 1982 was only 9 mg/m3. This is below levels found In most oligotrophic lakes and reservoirs. Algal biomass, as measured by chlorophyll-a, averaged only 1.5 mg/m3. That also places Lake Mead in the oligotrophic range. Transparency, as measured by a Secchi disc, averaged 9-5 m in Lake Mead during 1981-1982. That far exceeds …


The Role Of Nannoplankton In The Phytoplankton Dynamics Of Four Colorado River Reservoirs (Lakes Powell, Mead, Mohave, And Havasu), Jeffrey John Janik May 1984

The Role Of Nannoplankton In The Phytoplankton Dynamics Of Four Colorado River Reservoirs (Lakes Powell, Mead, Mohave, And Havasu), Jeffrey John Janik

Publications (WR)

Phytoplankton species composition and community size structure were studied in four warm-monomictic Colorado River reservoirs; lakes Powell, Mead, Mohave, and Havasu from March 1981 to February 1982. Sampling was done at approximately monthly intervals from several stations in each reservoir. The Utermohl technique was used to enumerate phytoplankton. The phytoplankton assemblage was divided into the following six size classes using microscopic techniques; netplankton (>64 um), and nannoplankton (>5, 5-11, 12-21, 22-44, and 45-64 um).

Total phytoplankton biomass and community size structure were different among these four reservoirs with considerable spatial and temporal variation present. Average reservoir-wide areal weighted …


Las Vegas Wash Advanced Water Quality Study: Final Report, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation Jan 1984

Las Vegas Wash Advanced Water Quality Study: Final Report, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation

Publications (WR)

The purpose of the Las Vegas Wash Advanced Water Quality Study is to determine the existence, extent, and mechanisms of nutrient and toxin stripping in Las Vegas Wash under present conditions and under future conditions, both with and without construction of the proposed salinity control unit as described by the Bureau of Reclamation (USBR, 1982b). This study was performed for the Lower Colorado Region Division of Planning by personnel of the Environmental Sciences Section of the Division of Research and Laboratory Services, E&R Center, Denver, Colorado. Work on the study began in February 1983.

The general approach adopted for this …


The Effects Of Limited Food Availability On The Striped Bass Fishery In Lake Mead, John R. Baker, Larry J. Paulson Jan 1983

The Effects Of Limited Food Availability On The Striped Bass Fishery In Lake Mead, John R. Baker, Larry J. Paulson

Publications (WR)

The original range of striped bass (Morone saxatilis) was along the Atlantic Coast. They were introduced into the lower Sacramento River in 1879 and are now also found along the Pacific Coast. A landlocked striped bass fishery was established in Santee-Cooper Reservoir, South Carolina, in 1954, and they have since been introduced into numerous other reservoirs, including Lake Havasu, Lake Mead and Lake Powell on the Colorado River. Striped bass were introduced into Lake Mead in 1969 in response to declines in the largemouth bass (Micropterus salmoides) fishery that occurred during the 1960s and in order to further utilize the …


Historical Patterns Of Phytoplankton Productivity In Lake Mead, Richard T. Prentki, Larry J. Paulson Jan 1983

Historical Patterns Of Phytoplankton Productivity In Lake Mead, Richard T. Prentki, Larry J. Paulson

Publications (WR)

Lake Mead was impounded in 1935 by the construction of Hoover Dam. The Colorado River was unregulated prior to then and therefore was subjected to extreme variations in flows and suspended sediment loads. Hoover Dam stabilized flows and reduced suspended sediment loads downstream, but Lake Mead still received silt-laden inflows from the upper Colorado River Basin. The Colorado River contributed 97% of the suspended sediment inputs to Lake Mead, and up to 140 x 1O6 metric tons (t) entered the reservoir in years of high runoff. Most of the sediments were deposited in the river channel and formed an …