Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

PDF

Selected Works

Nitrogen deposition

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Conditional Vulnerability Of Plant Diversity To Atmospheric Nitrogen Deposition Across The United States, Samuel M. Simkin, Edith B. Allen, William D. Bowman, Christopher M. Clark, Jayne Belnap, Matthew L. Brooks, Brian S. Cade, Scott L. Collins, Linda H. Geiser, Frank S. Gilliam, Sarah E. Jovan, Linda H. Pardo, Bethany K. Schulz, Carly J. Stevens, Katharine N. Suding, Heather L. Throop, Donald M. Waller Aug 2017

Conditional Vulnerability Of Plant Diversity To Atmospheric Nitrogen Deposition Across The United States, Samuel M. Simkin, Edith B. Allen, William D. Bowman, Christopher M. Clark, Jayne Belnap, Matthew L. Brooks, Brian S. Cade, Scott L. Collins, Linda H. Geiser, Frank S. Gilliam, Sarah E. Jovan, Linda H. Pardo, Bethany K. Schulz, Carly J. Stevens, Katharine N. Suding, Heather L. Throop, Donald M. Waller

Frank S. Gilliam

Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg …


Nitrogen Addition Shapes Soil Phosphorus Availability In Two Reforested Tropical Forests In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Hua Fang, Feifei Zhu, Yunting Fang, Wei Zhang, Juan Huang May 2016

Nitrogen Addition Shapes Soil Phosphorus Availability In Two Reforested Tropical Forests In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Hua Fang, Feifei Zhu, Yunting Fang, Wei Zhang, Juan Huang

Frank S. Gilliam

Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land-use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N-treatments (above ambient) …


Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo Apr 2016

Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo

Frank S. Gilliam

Although nitrogen (N) deposition is a significant threat to herbaceous plant biodiversity worldwide, it is not a new stressor for many developed regions. Only recently has it become possible to estimate historical impacts nationally for the United States. We used 26 years (1985–2010) of deposition data, with ecosystem-specific functional responses from local field experiments and a national critical loads (CL) database, to generate scenario-based estimates of herbaceous species loss. Here we show that, in scenarios using the low end of the CL range, N deposition exceeded critical loads over 0.38, 6.5, 13.1, 88.6, and 222.1 million ha for the Mediterranean …


Effects Of In Situ Freezing On Soil Net Nitrogen Mineralization And Net Nitrification In Fertilized Grassland Of Northern China, X. Zhang, W. Bai, Frank S. Gilliam, Q. Wang, X. Han, L. Li Sep 2012

Effects Of In Situ Freezing On Soil Net Nitrogen Mineralization And Net Nitrification In Fertilized Grassland Of Northern China, X. Zhang, W. Bai, Frank S. Gilliam, Q. Wang, X. Han, L. Li

Frank S. Gilliam

Effects of soil freezing on nitrogen (N) mineralization have been the subject of increased attention in the ecological literature, though fewer studies have examined N mineralization responses to successive mild freezing, severe freezing and cyclic freeze–thaw events. Even less is known about relationships of responses to soil N status. This study measured soil N mineralization and nitrification in the field along an experimental N gradient in a grassland of northern China during the dormant season (October 2005–April 2006), a period in which freezing naturally occurs. Net N mineralization exhibited great temporal variability, with nitrification being the predominant N transformation process. …


Effects Of Experimental Nitrogen Additions On Plant Diversity In Tropical Forests Of Contrasting Disturbance Regimes In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Guirui Yu, Wei Zhang, Yunting Fang, Juan Huang Sep 2012

Effects Of Experimental Nitrogen Additions On Plant Diversity In Tropical Forests Of Contrasting Disturbance Regimes In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Guirui Yu, Wei Zhang, Yunting Fang, Juan Huang

Frank S. Gilliam

Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (withharvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha1yr1, and 100kg N ha1yr1. Nitrogen additions did not significantly affect understory plant richness, density,and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in thisforest. In the rehabilitated forest, species richness and density showed no significant response to Nadditions; however, understory cover …


Global Assessment Of Nitrogen Deposition Effects On Terrestrial Plant Diversity : A Synthesis, R. Bobbink, K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, B. Emmett, J. W. Erisman, M. Fenn, Frank S. Gilliam, A. Nordin, L. Pardo, W. Devries Sep 2012

Global Assessment Of Nitrogen Deposition Effects On Terrestrial Plant Diversity : A Synthesis, R. Bobbink, K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, B. Emmett, J. W. Erisman, M. Fenn, Frank S. Gilliam, A. Nordin, L. Pardo, W. Devries

Frank S. Gilliam

Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now …