Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Microbial Nitrogen Limitation Increases Decomposition, Joseph M. Craine, Carl Morrow, Noah Fierer Aug 2007

Microbial Nitrogen Limitation Increases Decomposition, Joseph M. Craine, Carl Morrow, Noah Fierer

Dartmouth Scholarship

With anthropogenic nutrient inputs to ecosystems increasing globally, there are long-standing, fundamental questions about the role of nutrients in the decomposition of organic matter. We tested the effects of exogenous nitrogen and phosphorus inputs on litter decomposition across a broad suite of litter and soil types. In one experiment, C mineralization was compared across a wide array of plants individually added to a single soil, while in the second, C mineralization from a single substrate was compared across 50 soils. Counter to basic stoichiometric decomposition theory, low N availability can increase litter decomposition as microbes use labile substrates to acquire …


Impact Of Minimum Winter Temperatures On The Population Dynamics Of Dendroctonus Frontalis, J. KhảI TrầN, Tiina Ylioja, Ronald F. Billings, Jacques Régnière, Matthew P. Ayres Apr 2007

Impact Of Minimum Winter Temperatures On The Population Dynamics Of Dendroctonus Frontalis, J. KhảI TrầN, Tiina Ylioja, Ronald F. Billings, Jacques Régnière, Matthew P. Ayres

Dartmouth Scholarship

Predicting population dynamics is a fundamental problem in applied ecology. Temperature is a potential driver of short-term population dynamics, and temperature data are widely available, but we generally lack validated models to predict dynamics based upon temperatures. A generalized approach involves estimating the temperatures experienced by a population, characterizing the demographic consequences of physiological responses to temperature, and testing for predicted effects on abundance. We employed this approach to test whether minimum winter temperatures are a meaningful driver of pestilence from Dendroctonus frontalis (the southern pine beetle) across the southeastern United States. A distance-weighted interpolation model provided good, spatially explicit, …


A Proposal For Robust Temperature Compensation Of Circadian Rhythms, Christian I. Hong, Emery D. Conrad, John J. Tyson Jan 2007

A Proposal For Robust Temperature Compensation Of Circadian Rhythms, Christian I. Hong, Emery D. Conrad, John J. Tyson

Dartmouth Scholarship

The internal circadian rhythms of cells and organisms coordinate their physiological properties to the prevailing 24-h cycle of light and dark on earth. The mechanisms generating circadian rhythms have four defining characteristics: they oscillate endogenously with period close to 24 h, entrain to external signals, suffer phase shifts by aberrant pulses of light or temperature, and compensate for changes in temperature over a range of 10°C or more. Most theoretical descriptions of circadian rhythms propose that the underlying mechanism generates a stable limit cycle oscillation (in constant darkness or dim light), because limit cycles quite naturally possess the first three …