Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health

External Link

Selected Works

2011

Substrate Specificity

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson Nov 2011

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson

Celia A. Schiffer

Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The …


Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

Substrate Shape Determines Specificity Of Recognition For Hiv-1 Protease: Analysis Of Crystal Structures Of Six Substrate Complexes, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, …


Substrate Specificity In Hiv-1 Protease By A Biased Sequence Search Method, Nevra Ozer, Turkan Haliloglu, Celia Schiffer Nov 2011

Substrate Specificity In Hiv-1 Protease By A Biased Sequence Search Method, Nevra Ozer, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Drug resistance in HIV-1 protease can also occasionally confer a change in the substrate specificity. Through the use of computational techniques, a relationship can be determined between the substrate sequence and three-dimensional structure of HIV-1 protease, and be utilized to predict substrate specificity. In this study, we introduce a biased sequence search threading (BSST) methodology to analyze the preferences of substrate positions and correlations between them that might also identify which positions within known substrates can likely tolerate sequence variability and which cannot. The potential sequence space was efficiently explored using a low-resolution knowledge-based scoring function. The low-energy substrate sequences …


How Does A Symmetric Dimer Recognize An Asymmetric Substrate? A Substrate Complex Of Hiv-1 Protease, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer Nov 2011

How Does A Symmetric Dimer Recognize An Asymmetric Substrate? A Substrate Complex Of Hiv-1 Protease, Moses Prabu-Jeyabalan, Ellen Nalivaika, Celia Schiffer

Celia A. Schiffer

The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with …


Cooperative Fluctuations Of Unliganded And Substrate-Bound Hiv-1 Protease: A Structure-Based Analysis On A Variety Of Conformations From Crystallography And Molecular Dynamics Simulations, Nese Kurt, Walter Scott, Celia Schiffer, Turkan Haliloglu Nov 2011

Cooperative Fluctuations Of Unliganded And Substrate-Bound Hiv-1 Protease: A Structure-Based Analysis On A Variety Of Conformations From Crystallography And Molecular Dynamics Simulations, Nese Kurt, Walter Scott, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

The dynamics of HIV-1 protease, both in unliganded and substrate-bound forms have been analyzed by using an analytical method, Gaussian network model (GNM). The method is applied to different conformations accessible to the protein backbone in the native state, observed in crystal structures and snapshots from fully atomistic molecular dynamics (MD) simulation trajectories. The modes of motion obtained from GNM on different conformations of HIV-1 protease are conserved throughout the MD simulations. The flaps and 40's loop of the unliganded HIV-1 protease structure are identified as the most mobile regions. However, in the liganded structure these flaps lose mobility, and …


Design Of Mutation-Resistant Hiv Protease Inhibitors With The Substrate Envelope Hypothesis, Sripriya Chellappan, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Visvaldas Kairys, Miguel Fernandes, Michael Altman, Bruce Tidor, Tariq Rana, Celia Schiffer, Michael Gilson Nov 2011

Design Of Mutation-Resistant Hiv Protease Inhibitors With The Substrate Envelope Hypothesis, Sripriya Chellappan, G. S. Kiran Kumar Reddy, Akbar Ali, Madhavi Nalam, Saima Anjum, Hong Cao, Visvaldas Kairys, Miguel Fernandes, Michael Altman, Bruce Tidor, Tariq Rana, Celia Schiffer, Michael Gilson

Celia A. Schiffer

There is a clinical need for HIV protease inhibitors that can evade resistance mutations. One possible approach to designing such inhibitors relies upon the crystallographic observation that the substrates of HIV protease occupy a rather constant region within the binding site. In particular, it has been hypothesized that inhibitors which lie within this region will tend to resist clinically relevant mutations. The present study offers the first prospective evaluation of this hypothesis, via computational design of inhibitors predicted to conform to the substrate envelope, followed by synthesis and evaluation against wild-type and mutant proteases, as well as structural studies of …


Structure-Based Prediction Of Potential Binding And Nonbinding Peptides To Hiv-1 Protease, Nese Kurt, Turkan Haliloglu, Celia Schiffer Nov 2011

Structure-Based Prediction Of Potential Binding And Nonbinding Peptides To Hiv-1 Protease, Nese Kurt, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target against AIDS as it permits viral maturation by processing the gag and pol polyproteins of the virus. The cleavage sites in these polyproteins do not have obvious sequence homology or a binding motif and the specificity of the protease is not easily determined. We used various threading approaches, together with the crystal structures of substrate complexes which served as template structures, to study the substrate specificity of HIV-1 protease with the aim of obtaining a better differentiation between binding and nonbinding sequences. The predictions from threading improved when distance-dependent interaction energy functions were …