Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience

PDF

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 74

Full-Text Articles in Life Sciences

Understanding Huntington's Disease Using Machine Learning Approaches, Sonali Lokhande Dec 2017

Understanding Huntington's Disease Using Machine Learning Approaches, Sonali Lokhande

KGI Theses and Dissertations

Huntington’s disease (HD) is a debilitating neurodegenerative disorder with a complex pathophysiology. Despite extensive studies to study the disease, the sequence of events through which mutant Huntingtin (mHtt) protein executes its action still remains elusive. The phenotype of HD is an outcome of numerous processes initiated by the mHtt protein along with other proteins that act as either suppressors or enhancers of the effects of mHtt protein and PolyQ aggregates. Utilizing an integrative systems biology approach, I construct and analyze a Huntington’s disease integrome using human orthologs of protein interactors of wild type and mHtt protein. Analysis of this integrome …


Novel Therapeutic Approaches For Juvenile Neuronal Ceroid Lipofuscinosis (Cln3), Megan Elizabeth Bosch Dec 2017

Novel Therapeutic Approaches For Juvenile Neuronal Ceroid Lipofuscinosis (Cln3), Megan Elizabeth Bosch

Theses & Dissertations

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a lysosomal storage disease caused by autosomal recessive mutations in CLN3. Neuronal loss is thought to occur via glutamate excitotoxicity; however, little is known about neuron-astrocyte glutamate regulation in JNCL. We discovered that Cln3Δex7/8 astrocytes have significantly lower basal spontaneous Ca2+ oscillations and decreased responses to glutamate, indicating a disrupted signaling network. Cln3Δex7/8 astrocytes also displayed significantly lower basal mitochondrial respiration and ATP production, suggesting impaired metabolic functions. Concurrent with diminished astrocyte metabolism and Ca2+ signaling, Cln3Δex7/8 neurons were hyper-responsive to glutamate stimulation. These studies suggest that CLN3 …


Methylglyoxal Requires Ac1 And Trpa1 To Produce Pain And Spinal Neuron Activation, Ryan B. Griggs, Don E. Laird, Renee R. Donahue, Weisi Fu, Bradley K. Taylor Dec 2017

Methylglyoxal Requires Ac1 And Trpa1 To Produce Pain And Spinal Neuron Activation, Ryan B. Griggs, Don E. Laird, Renee R. Donahue, Weisi Fu, Bradley K. Taylor

Physiology Faculty Publications

Methylglyoxal (MG) is a metabolite of glucose that may contribute to peripheral neuropathy and pain in diabetic patients. MG increases intracellular calcium in sensory neurons and produces behavioral nociception via the cation channel transient receptor potential ankyrin 1 (TRPA1). However, rigorous characterization of an animal model of methylglyoxal-evoked pain is needed, including testing whether methylglyoxal promotes negative pain affect. Furthermore, it remains unknown whether methylglyoxal is sufficient to activate neurons in the spinal cord dorsal horn, whether this requires TRPA1, and if the calcium-sensitive adenylyl cyclase 1 isoform (AC1) contributes to MG-evoked pain. We administered intraplantar methylglyoxal and then evaluated …


A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson Dec 2017

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized …


Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes Dec 2017

Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes

Dissertations & Theses (Open Access)

Amyloid-beta (Aβ) aggregation and deposition into extracellular plaques is a hallmark of the most common forms of dementia, including Alzheimer’s disease. The Aβ-containing plaques result from pathogenic cleavage of amyloid precursor protein (APP) by secretases resulting in intracellular production of Aβ peptides that are secreted and accumulate extracellularly. Despite considerable progress towards understanding APP processing and Aβ aggregation, the mechanisms underlying endosomal production of Aβ peptides and their secretion remain unclear. Using endosomes isolated from cultured primary neurons, we determined that the trafficking of APP from the endosomal membrane into internal vesicles of late endosome/multivesicular bodies (MVB) is dependent on …


Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff Dec 2017

Brain Energy Homeostasis And The Regulation Of N-Acetyl-Aspartate Metabolism In Development And Disease, Samantha Zaroff

Graduate School of Biomedical Sciences Theses and Dissertations

N-acetylaspartate (NAA) is a non-invasive clinical marker of neuronal metabolic integrity because of its strong proton magnetic resonance spectroscopy (H-MRS) peak and direct correlation with energetic integrity. Specifically, NAA is used to track the progression of neurodegenerative diseases due to the characteristic reduction of whole brain levels of NAA which occur simultaneously with reduced glucose utilization and mitochondrial dysfunction, but prior to the onset of disease specific pathology. However, NAA will also significantly increase simultaneously with energetic integrity during periods of recovery or remission in applicable disorders, such as traumatic brain injuries. Unfortunately, it remains enigmatic exactly why NAA is …


A Neuroprotective Role For Mir-1017, A Non-Canonical Mirna, Matthew De Cruz Dec 2017

A Neuroprotective Role For Mir-1017, A Non-Canonical Mirna, Matthew De Cruz

Master's Theses

miRNAs are post-transcriptional regulators of gene expression, with numerous being involved in neurobiology. Within the human genome a quarter of the identified miRNA loci derive from a class of miRNAs termed tailed mirtrons. Despite the identification of this large population of miRNA, no functional studies have been conducted to identify their role. In this study we examined the highly expressed and deeply conserved Drosophila 3’ tail mirtron, miR-1017, as a candidate to elucidate tailed mirtron functionality. We identified acetylcholine receptor transcripts, Da5 and Da2, as bona fide targets for miR-1017. Interestingly, Da2 is also the host transcript for miR-1017. We …


Circulating Autoantibodies In Human Traumatic Spinal Cord Injury Subjects And Their Relationship To The Development Of Neuropathic Pain, Georgene Hergenroeder Dec 2017

Circulating Autoantibodies In Human Traumatic Spinal Cord Injury Subjects And Their Relationship To The Development Of Neuropathic Pain, Georgene Hergenroeder

Dissertations & Theses (Open Access)

Background:

Approximately 17,500 spinal cord injuries (SCI) occur yearly in the U.S. causing considerable morbidity and mortality. Neuropathic pain (NP) ensues in 40-70% of SCI. An autoimmune response resulting from disruption of the blood-spinal cord-barrier may be a contributor to NP. However, the relationship between autoantibodies and NP after SCI in humans has not been thoroughly characterized nor have autoantigens been identified. Glial fibrillary acidic protein (GFAP) and collapsin response mediator protein2 (CRMP2) were identified as candidate autoantigens. The hypothesis is that proteins from the injured spinal cord released by SCI trigger autoantibody production which can lead to the development …


Analytical Modeling Of A Communication Channel Based On Subthreshold Stimulation Of Neurobiological Networks, Alireza Khodaei Dec 2017

Analytical Modeling Of A Communication Channel Based On Subthreshold Stimulation Of Neurobiological Networks, Alireza Khodaei

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

The emergence of wearable and implantable machines manufactured artificially or synthesized biologically opens up a new horizon for patient-centered health services such as medical treatment, health monitoring, and rehabilitation with minimized costs and maximized popularity when provided remotely via the Internet. In particular, a swarm of machines at the scale of a single cell down to the nanoscale can be deployed in the body by the non-invasive or minimally invasive operation (e.g., swallowing and injection respectively) to perform various tasks. However, an individual machine is only able to perform basic tasks so it needs to exchange data with the others …


Mitochondrial Fission After Traumatic Brain Injury, Tara Fischer Dec 2017

Mitochondrial Fission After Traumatic Brain Injury, Tara Fischer

Dissertations & Theses (Open Access)

Mitochondrial dysfunction is a central feature in the pathophysiology of Traumatic Brain Injury (TBI). Loss of mitochondrial function disrupts normal cellular processes in the brain, as well as impedes the ability for repair and recovery, creating a vicious cycle that perpetuates damage after injury. To maintain metabolic homeostasis and cellular health, mitochondria constantly undergo regulated processes of fusion and fission and functionally adapt to changes in the cellular environment. An imbalance of these processes can disrupt the ability for mitochondria to functionally meet the metabolic needs of the cell, therefore resulting in mitochondrial damage and eventual cell death. Excessive fission, …


Glutamylation Regulates Transport, Specializes Function, And Sculpts The Structure Of Cilia, Robert O'Hagan, Malan Silva, Ken Cq Nguyen, Winnie Zhang, Sebastian Bellotti, Yasmin Ramadan, David Hall, Maureen M. Barr Nov 2017

Glutamylation Regulates Transport, Specializes Function, And Sculpts The Structure Of Cilia, Robert O'Hagan, Malan Silva, Ken Cq Nguyen, Winnie Zhang, Sebastian Bellotti, Yasmin Ramadan, David Hall, Maureen M. Barr

Department of Biology Faculty Scholarship and Creative Works

Ciliary microtubules (MTs) are extensively decorated with post-translational modifications (PTMs), such as glutamylation of tubulin tails. PTMs and tubulin isotype diversity act as a “Tubulin Code” that regulates cytoskeletal stability and the activity of MT-associated proteins such as kinesins. We previously showed that, in C. elegans cilia, the deglutamylase CCPP-1 affects ciliary ultrastructure, localization of the TRP channel PKD-2 and the kinesin-3 KLP-6, and velocity of kinesin-2 OSM-3/KIF17, while a cell-specific α-tubulin isotype regulates ciliary ultrastructure, intraflagellar transport, and ciliary functions of extracellular vesicle (EV)-releasing neurons. Here, we examine the role of PTMs and the Tubulin Code in the cililary …


P2x2 Dominant Deafness Mutations Have No Negative Effect On Wild-Type Isoform: Implications For Functional Rescue And In Deafness Mechanism, Yan Zhu, Juline Beudez, Ning Yu, Thomas Grutter, Hong-Bo Zhao Nov 2017

P2x2 Dominant Deafness Mutations Have No Negative Effect On Wild-Type Isoform: Implications For Functional Rescue And In Deafness Mechanism, Yan Zhu, Juline Beudez, Ning Yu, Thomas Grutter, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

The P2X2 receptor is an ATP-gated ion channel, assembled by three subunits. Recently, it has been found that heterozygous mutations of P2X2 V60L and G353R can cause autosomal dominant nonsyndromic hearing loss. However, the underlying mechanism remains unclear. The fact that heterozygous mutations cause deafness suggests that the mutations may have dominant-negative effect (DNE) on wild-type (WT) P2X2 isoforms and/or other partners leading to hearing loss. In this study, the effect of these dominant deafness P2X2 mutations on WT P2X2 was investigated. We found that sole transfection of both V60L and G353R deafness mutants could efficiently target to the plasma …


Sex Differences In Estradiol Signaling In The Zebra Finch (Taeniopygia Gutatta) Auditory Cortex, Amanda Krentzel Nov 2017

Sex Differences In Estradiol Signaling In The Zebra Finch (Taeniopygia Gutatta) Auditory Cortex, Amanda Krentzel

Doctoral Dissertations

Although several sex differences have been described in brain structure, function, and development, sex as a biological factor is underrepresented in neuroscience studies. In the mammalian brain, there are sex differences in the mechanism of rapid estradiol actions on neuronal physiology. In the songbird, the brain is a major source of estradiol production, and estradiol rapidly modulates auditory responsiveness through dynamic changes and an unknown receptor mechanism. I set out to determine if there are sex differences in rapid estradiol modulation of auditory cortical activity, as has been shown in other systems. I tested this hypothesis through three aims: 1) …


Social Status Modulates Restraint- Induced Neural Activity In Brain Regions Controlling Stress Vulnerability , Sahba Seddighi, Matthew A. Cooper Oct 2017

Social Status Modulates Restraint- Induced Neural Activity In Brain Regions Controlling Stress Vulnerability , Sahba Seddighi, Matthew A. Cooper

Haslam Scholars Projects

Understanding the cellular mechanisms that control resistance and vulnerability to stress is an important step toward identifying novel targets for the prevention and treatment of stress-related mental illness. Dominant and subordinate animals have been shown to exhibit different behavioral and physiological responses to stress, with dominants often showing stress resistance and subordinates often showing stress vulnerability. We have previously found that dominant hamsters exhibit reduced social avoidance following social defeat stress compared to subordinate hamsters, although the extent to which stress resistance in dominants generalizes to non-social stressors is unknown. In this study, dominant, subordinate, and control male Syrian hamsters …


Machine Learning Analysis Identifies Drosophila Grunge/Atrophin As An Important Learning And Memory Gene Required For Memory Retention And Social Learning, Balint Kacsoh Oct 2017

Machine Learning Analysis Identifies Drosophila Grunge/Atrophin As An Important Learning And Memory Gene Required For Memory Retention And Social Learning, Balint Kacsoh

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Single-Base Resolution Mapping Of 5-Hydroxymethylcytosine Modifications In Hippocampus Of Alzheimer's Disease Subjects, Elizabeth M. Ellison, Melissa A. Bradley-Whitman, Mark A. Lovell Oct 2017

Single-Base Resolution Mapping Of 5-Hydroxymethylcytosine Modifications In Hippocampus Of Alzheimer's Disease Subjects, Elizabeth M. Ellison, Melissa A. Bradley-Whitman, Mark A. Lovell

Chemistry Faculty Publications

Epigenetic modifications to cytosine have been shown to regulate transcription in cancer, embryonic development, and recently neurodegeneration. While cytosine methylation studies are now common in neurodegenerative research, hydroxymethylation studies are rare, particularly genome-wide mapping studies. As an initial study to analyze 5-hydroxymethylcytosine (5-hmC) in the Alzheimer’s disease (AD) genome, reduced representation hydroxymethylation profiling (RRHP) was used to analyze more than 2 million sites of possible modification in hippocampal DNA of sporadic AD and normal control subjects. Genes with differentially hydroxymethylated regions were filtered based on previously published microarray data for altered gene expression in hippocampal DNA of AD subjects. Our …


Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis Sep 2017

Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis

Dissertations, Theses, and Capstone Projects

Inflammation plays a major role in Alzheimer’s disease (AD). Investigating how specific mediators of inflammation contribute to neurodegeneration in AD is crucial. Our studies focused on cyclooxygenases, which are key enzymes in inflammation and highly relevant to AD. Cyclooxygenases (COX -1, constitutive; COX-2, inducible) have emerged as important determinants of AD pathogenesis and progression. COX-2 is highly induced in AD, correlating with AD severity, and COX-1 is also involved in AD. Cyclooxygenases are the rate-limiting enzymes that convert arachidonic acid into prostaglandins (PGs), the principal mediators of CNS neuroinflammation.

The overall GOAL of these studies was to address the mechanisms …


Pharmacological Antagonism And The Olfactory Code, Mihwa Na Sep 2017

Pharmacological Antagonism And The Olfactory Code, Mihwa Na

Dissertations, Theses, and Capstone Projects

Mammals can detect and discriminate uncountable odors through their odorant receptors. To accommodate the countless and diverse odors, exceptionally large numbers of odorant receptor (OR) genes are expressed in mammals. In addition, the mammals utilize a combinatorial code, where an odorant molecule can activate multiple ORs; an OR also responds to a set of multiple odorants. In nature, an odor is often a complex mixture of multiple odorant molecules. The combination of the ORs activated by each constituent generates the unique olfactory code for the particular odor.

Some odorants can antagonize select ORs, as discussed in Chapter 1. An antagonist …


C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl Eggers, Noelle L’Etoile, Laura Miller Conrad, Miri Vanhoven Sep 2017

C. Elegans Avoids Toxin-Producing Streptomyces Using A Seven Transmembrane Domain Chemosensory Receptor, Alan Tran, Angelina Tang, Colleen O’Loughlin, Anthony Balistreri, Eric Chang, Doris Coto Villa, Joy Li, Aruna Varshney, Vanessa Jimenez, Jacqueline Pyle, Bryan Tsujimoto, Christopher Wellbrook, Christopher Vargas, Alex Duong, Nebat Ali, Sarah Matthews, Samantha Levinson, Sarah Woldemariam, Sami Khuri, Martina Bremer, Daryl Eggers, Noelle L’Etoile, Laura Miller Conrad, Miri Vanhoven

Faculty Publications, Chemistry

Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, …


Study Of Regulated Cell Death In Two Systems: Pd-1 In Natural Killer Cells And Rip3 In Neurons, Yu Huang Sep 2017

Study Of Regulated Cell Death In Two Systems: Pd-1 In Natural Killer Cells And Rip3 In Neurons, Yu Huang

Dissertations & Theses (Open Access)

Cell death is not only an essential phenomenon in normal development and homeostasis, but also crucial in various pathologies. It is now clear that many types of cell death can be regulated by pharmacological or genetic interventions. These were largely achieved by identifying the molecular mechanisms underlying the regulated cell death (RCD). While in the immune system, RCD needs to be facilitated to help the clearance of pathogens and tumors, in healthy cells, especially the terminally differentiated neurons in the nervous system, it is more desirable to protect cells from dying due to stress under pathological conditions. Thus, understating the …


Thiamine Deficiency And Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, And Autophagy, Dexiang Liu, Zunji Ke, Jia Luo Sep 2017

Thiamine Deficiency And Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, And Autophagy, Dexiang Liu, Zunji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in …


Modulation Of Spasticity By Trans-Spinal Direct Current Stimulation In Animals With Spinal Cord Injury, Wagdy Mekhael Sep 2017

Modulation Of Spasticity By Trans-Spinal Direct Current Stimulation In Animals With Spinal Cord Injury, Wagdy Mekhael

Dissertations, Theses, and Capstone Projects

Central nervous system injuries usually produce motor impairments that are exacerbated by pathologically altered muscle tone. Abnormal muscle tone interferes with voluntary movement and is associated with loss of dexterity. Prior work in our laboratory demonstrated that 30-second trans-spinal direct current (DC) stimulation can temporarily modify muscle tone in anesthetized spastic mice after spinal cord injury (SCI). These experiments described DC-induced muscle tone responses to be polarity-dependent. That is, anodal stimulation (current passed from the lumbar spine to sciatic nerve) decreased muscle tone, and cathodal stimulation (current passed from the sciatic nerve to the lumbar spine) increased it. The present …


Modulation Of The Sodium/Potassium Atpase Function And Expression By Transcranial Direct Current Stimulation Of The Right Sensorimotor Cortex In Mice, Salim Bendaoud Sep 2017

Modulation Of The Sodium/Potassium Atpase Function And Expression By Transcranial Direct Current Stimulation Of The Right Sensorimotor Cortex In Mice, Salim Bendaoud

Dissertations, Theses, and Capstone Projects

Direct current stimulation is used as a noninvasive therapeutic technique to enhance motor recovery following stroke, and to improve cognitive functions. This technique also showed promising results in the treatment of depression, schizophrenia, and multiple sclerosis. Transcranial direct current stimulation has been proven to cause a polarization (depolarization or hyperpolarization) of the target tissues depending on the polarity of the current and cell orientation. Because of the induced polarization, the spontaneous activity of the neurons is further affected. With exception to this electrophysiological effect, the overall biological mechanisms of transcranial direct current stimulation on the underlying tissues remain largely unknown. …


Distribution And Activation Of Catecholaminergic Neurons In The Brain Of Male Plainfin Midshipman Fish: Divergence In Behavior And Reproductive Phenotype, Zachary Ghahramani Sep 2017

Distribution And Activation Of Catecholaminergic Neurons In The Brain Of Male Plainfin Midshipman Fish: Divergence In Behavior And Reproductive Phenotype, Zachary Ghahramani

Dissertations, Theses, and Capstone Projects

The plainfin midshipman fish, Porichthys notatus, provides an excellent opportunity for delimiting the influence of neurochemical content on vertebrate vocal behavior, in part because the production and recognition of social-acoustic signals is vital to their reproductive behavior. There are two distinct reproductive male morphs that follow divergent developmental trajectories with corresponding alternative reproductive tactics: type I males are the territorial/nesting morph that vocally court females during the summer breeding season while type II males do not court females, but instead sneak spawn in competition with type I males. Catecholaminergic neurons, which synthesize and release the neurotransmitters dopamine or noradrenaline, …


Phosphorylation Of Tau Protein At Thr175 Is A Toxic Event Associated With Neurodegeneration, Alexander Moszczynski Aug 2017

Phosphorylation Of Tau Protein At Thr175 Is A Toxic Event Associated With Neurodegeneration, Alexander Moszczynski

Electronic Thesis and Dissertation Repository

Aberrant phosphorylation and pathological deposition of the microtubule associated protein tau (tau protein) is associated with toxicity and cellular death in a number of neurodegenerative diseases (tauopathies). Specific phosphorylation sites are of interest in the processes leading to tau protein toxicity. One site of interest on tau protein is Thr175 (pThr175), which has been identified in diseased brain tissue from individuals with amyotrophic lateral sclerosis with cognitive impairment (ALSci) and Alzheimer’s disease. In vitro, pseudophosphorylation at this residue has been shown to induce the formation of pathological tau fibrils and, apoptotic cell death.

In my thesis, …


Amelioration Of Prenatal Alcohol Effects By Environmental Enrichment In A Mouse Model Of Fasd, Aniruddho Chokroborty-Hoque Aug 2017

Amelioration Of Prenatal Alcohol Effects By Environmental Enrichment In A Mouse Model Of Fasd, Aniruddho Chokroborty-Hoque

Electronic Thesis and Dissertation Repository

Maternal alcohol consumption during pregnancy results in a spectrum of behavioural and cognitive deficits collectively known as Fetal Alcohol Spectrum Disorders (FASD). Currently, little is know about if and how the external environment may modulate these deficits. I have used C57BL/6 mice to study this interaction between prenatal alcohol exposure and the postnatal environment. Alcohol exposure during synaptogenesis produces high levels of anxiety-like traits and decreased memory performance. Alcohol-exposed mice (and matched unexposed controls) were put in 'environmentally-enriched' conditions of voluntary exercise, physical activities and cognitive stimulation to ascertain the effects of a positive postnatal environment. The results show that …


Investigating The Protective Effects Of Telomerase Reverse Transcriptase On Neuronal Metabolism And Resistance To Amyloid-Beta, Olivia Singh Aug 2017

Investigating The Protective Effects Of Telomerase Reverse Transcriptase On Neuronal Metabolism And Resistance To Amyloid-Beta, Olivia Singh

Electronic Thesis and Dissertation Repository

Maintenance of telomere length during cell division is dependent on the catalytic subunit telomerase reverse transcriptase (TERT), which adds TTAGGG repeats to the ends of chromosomes to prevent telomere shortening during DNA replication. However, non-telomeric roles of TERT have emerged under oxidative stress whereby TERT translocates from the nucleus to the mitochondria and protects against mitochondrial dysfunction through a poorly defined mechanism. A major pathological feature of Alzheimer’s Disease (AD) is the progressive accumulation of amyloid-beta (Aβ) peptide within the cortex and hippocampus. Aβ can directly interfere with mitochondrial respiration and promote mitochondrial dysfunction, ROS production, and neuronal cell death. …


Pattern Recognition Receptors, Immune Proteins, And Nf-Κb Signaling Regulate Behaviors Associated With Aging Phenotypes, Nicholas W. Dekorver Aug 2017

Pattern Recognition Receptors, Immune Proteins, And Nf-Κb Signaling Regulate Behaviors Associated With Aging Phenotypes, Nicholas W. Dekorver

Theses & Dissertations

The aging process is accompanied by functional impairments, including reduced locomotor function, fragmentation of active states, and alterations in energy balance. Our lab has demonstrated that immune proteins are increased in specific regions of the mouse brain that correlate with strain specific deficits. These immune proteins include toll-like receptors (Tlr), class I major histocompatibility complex proteins (MHC I), and complement proteins. There is an increasing appreciation for the role of immune proteins in neurodevelopment; however, their involvement in age-associated deficits is poorly understood. Here, we present data demonstrating that 1) activation of a specific immune receptor (Tlr2) leads to changes …


Inflammasome Activation By Methamphetamine Potentiates Lipopolysaccharide Stimulation Of Il-1Β Production In Microglia, Enquan Xu Aug 2017

Inflammasome Activation By Methamphetamine Potentiates Lipopolysaccharide Stimulation Of Il-1Β Production In Microglia, Enquan Xu

Theses & Dissertations

Methamphetamine (Meth) is a psychostimulant drug that is widely abused all around the world. The administration of Meth causes a strong instant euphoria effect, and long-term of abuse is correlative of drug-dependence and neurotoxicity. The neuroimaging studies demonstrated that the long-term abuse of Meth is associated with the reduction of the dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) in the striatum. Neuroinflammation is well-accepted as an important mechanism underlying the Meth-induced neurotoxicity. The over-activated microglia were found both in Meth human abusers and animal models.

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is the most predominant Nod-like …


Conditional Sox9 Ablation 30 Days After Spinal Cord Injury: Testing The Therapeutic Value Of A Successful Acute Strategy To Increase Neuroplasticity In A Model Of Chronic Spinal Cord Injury, Natalie M. Ossowski Aug 2017

Conditional Sox9 Ablation 30 Days After Spinal Cord Injury: Testing The Therapeutic Value Of A Successful Acute Strategy To Increase Neuroplasticity In A Model Of Chronic Spinal Cord Injury, Natalie M. Ossowski

Electronic Thesis and Dissertation Repository

Many individuals who have suffered from spinal cord injury (SCI) have longstanding damage. The molecular environment of the spinal cord is not permissive to axonal growth and neuroplasticity after injury is limited. Perineuronal nets containing chondroitin sulfate proteoglycans (CSPGs) are major inhibitors of axonal sprouting. Our laboratory has identified that the transcription factor SOX9 regulates a battery of genes involved in CSPG biosynthesis. Using Sox9 conditional knockout mice, we have shown that ablating Sox9 before injury decreases CSPG levels in the cord, increases reparative sprouting, and leads to improved locomotor recovery. However, it is unknown whether Sox9 ablation following SCI …