Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Life Sciences

Host-Defense Piscidin Peptides As Antibiotic Adjuvants Against Clostridioides Difficile, Adenrele Oludiran, Areej Malik, Andriana C. Zourou, Yonghan Wu, Steven P. Gross, Albert Siryapon, Asia Poudel, Kwincy Alleyne, Savion Adams, David S. Courson, Myriam L. Cotten, Erin B. Purcell Jan 2024

Host-Defense Piscidin Peptides As Antibiotic Adjuvants Against Clostridioides Difficile, Adenrele Oludiran, Areej Malik, Andriana C. Zourou, Yonghan Wu, Steven P. Gross, Albert Siryapon, Asia Poudel, Kwincy Alleyne, Savion Adams, David S. Courson, Myriam L. Cotten, Erin B. Purcell

Chemistry & Biochemistry Faculty Publications

The spore-forming intestinal pathogen Clostridioides difficile causes multidrug resistant infection with a high rate of recurrence after treatment. Piscidins 1 (p1) and 3 (p3), cationic host defense peptides with micromolar cytotoxicity against C. difficile, sensitize C. difficile to clinically relevant antibiotics tested at sublethal concentrations. Both peptides bind to Cu2+ using an amino terminal copper and nickel binding motif. Here, we investigate the two peptides in the apo and holo states as antibiotic adjuvants against an epidemic strain of C. difficile. We find that the presence of the peptides leads to lower doses of …


Expanding Our Grasp Of Two-Component Signaling In Clostridioides Difficile, Orlando Berumen Alvarez, Erin B. Purcell Jan 2023

Expanding Our Grasp Of Two-Component Signaling In Clostridioides Difficile, Orlando Berumen Alvarez, Erin B. Purcell

Chemistry & Biochemistry Faculty Publications

The intestinal pathogen Clostridioides difficile encodes roughly 50 TCS, but very few have been characterized in terms of their activating signals or their regulatory roles. A. G. Pannullo, B. R. Zbylicki, and C. D. Ellermeier (J Bacteriol 205:e00164-23, 2023, https://doi.org/10.1128/jb.00164-23) have identified both for the novel C. difficile TCD DraRS. DraRS responds to antibiotics that target lipid-II molecules in the bacterial cell envelope, and regulates the production of a novel glycolipid necessary for bacitracin and daptomycin resistance in C. difficile.


Unique Features Of Alarmone Metabolism In Clostridioides Difficile, Asia Poudel, Astha Pokhrel, Adenrele Oludiran, Estevan J. Coronado, Kwincy Alleyne, Marrett M. Gilfus, Raj K. Gurung, Surya B. Adhikari, Erin B. Purcell Jan 2022

Unique Features Of Alarmone Metabolism In Clostridioides Difficile, Asia Poudel, Astha Pokhrel, Adenrele Oludiran, Estevan J. Coronado, Kwincy Alleyne, Marrett M. Gilfus, Raj K. Gurung, Surya B. Adhikari, Erin B. Purcell

Chemistry & Biochemistry Faculty Publications

The “magic spot” alarmones (pp)pGpp, previously implicated in Clostridioides difficile antibiotic survival, are synthesized by the RelA-SpoT homolog (RSH) of C. difficile (RSHCd) and RelQCd. These enzymes are transcriptionally activated by diverse environmental stresses. RSHCd has previously been reported to synthesize ppGpp, but in this study, we found that both clostridial enzymes exclusively synthesize pGpp. While direct synthesis of pGpp from a GMP substrate, and (p)ppGpp hydrolysis into pGpp by NUDIX hydrolases, have previously been reported, there is no precedent for a bacterium synthesizing pGpp exclusively. Hydrolysis of the 5′ phosphate or pyrophosphate from GDP …


Microbial Labilization And Diversification Of Pyrogenic Dissolved Organic Matter, Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, Patrick G. Hatcher Jan 2022

Microbial Labilization And Diversification Of Pyrogenic Dissolved Organic Matter, Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

With the increased occurrence of wildfires around the world, interest in the chemistry of pyrogenic organic matter (pyOM) and its fate in the environment has increased. Upon leaching from soils by rain events, significant amounts of dissolved pyOM (pyDOM) enter the aquatic environment and interact with microbial communities that are essential for cycling organic matter within the different biogeochemical cycles. To evaluate the biodegradability of pyDOM, aqueous extracts of laboratory-produced biochars were incubated with soil microbes, and the molecular changes to the composition of pyDOM were probed using ultrahigh-resolution mass spectrometry (Fourier transform–ion cyclotron resonance–mass spectrometry). Given that solar irradiation …


Ozonized Biochar Filtrate Effects On The Growth Of Pseudomonas Putida And Cyanobacteria Synechococcus Elongatus Pcc 7942, Oumar Sacko, Nancy L. Engle, Timothy J. Tschaplinski, Sandeep Kumar, James Weifu Lee Jan 2022

Ozonized Biochar Filtrate Effects On The Growth Of Pseudomonas Putida And Cyanobacteria Synechococcus Elongatus Pcc 7942, Oumar Sacko, Nancy L. Engle, Timothy J. Tschaplinski, Sandeep Kumar, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Background

Biochar ozonization was previously shown to dramatically increase its cation exchange capacity, thus improving its nutrient retention capacity. The potential soil application of ozonized biochar warrants the need for a toxicity study that investigates its effects on microorganisms.

Results

In the study presented here, we found that the filtrates collected from ozonized pine 400 biochar and ozonized rogue biochar did not have any inhibitory effects on the soil environmental bacteria Pseudomonas putida, even at high dissolved organic carbon (DOC) concentrations of 300 ppm. However, the growth of Synechococcus elongatus PCC 7942 was inhibited by the ozonized biochar filtrates at …


Isothermal Environmental Heat Energy Utilization By Transmembrane Electrostatically Localized Protons At The Liquid-Membrane Interface, James Weifu Lee Jan 2020

Isothermal Environmental Heat Energy Utilization By Transmembrane Electrostatically Localized Protons At The Liquid-Membrane Interface, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

This study employing the latest theory on transmembrane electrostatic proton localization has now, for the first time, consistently elucidated a decades-longstanding bioenergetic conundrum in alkalophilic bacteria and more importantly discovered an entirely new feature: isothermal environmental heat utilization by electrostatically localized protons at the liquid-membrane interface. It was surprisingly revealed that the protonic motive force (equivalent to Gibbs free energy) from the isothermal environmental heat energy utilization through the electrostatically localized protons is not constrained by the overall energetics of the redox-driven proton pump system because of the following: (a) the transmembrane electrostatically localized protons are not free to move …


Electrostatically Localized Proton Bioenergetics: Better Understanding Membrane Potential, James Weifu Lee Jul 2019

Electrostatically Localized Proton Bioenergetics: Better Understanding Membrane Potential, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

In Mitchell's chemiosmotic theory, membrane potential Δψ was given as the electric potential difference across the membrane. However, its physical origin for membrane potential Δψ was not well explained. Using the Lee proton electrostatic localization model with a newly formulated equation for protonic motive force (pmf) that takes electrostatically localized protons into account, membrane potential has now been better understood as the voltage difference contributed by the localized surface charge density ([H-+L] + nΣ i=1 [M(i+)L]) at the liquid-membrane interface as in an electrostatically localized protons/cations-membrane-anions capacitor. That is, the origin of membrane …


Size-Dependent Inhibitory Effects Of Antibiotic Drug Nanocarriers Against Pseudomonas Aeruginosa, Feng Ding, Preeyaporn Songkiatisak, Pavan Kumar Cherukuri, Tao Huang, Xiao-Hong Nancy Xu Jan 2018

Size-Dependent Inhibitory Effects Of Antibiotic Drug Nanocarriers Against Pseudomonas Aeruginosa, Feng Ding, Preeyaporn Songkiatisak, Pavan Kumar Cherukuri, Tao Huang, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters (efflux pumps) are responsible for multidrug resistance (MDR) and the low efficacy of therapeutic drugs. Noble metal nanoparticles (NPs) possess a high surface-area-to-volume ratio and size-dependent plasmonic optical properties, enabling them to serve both as imaging probes to study sized-dependent MDR and as potential drug carriers to circumvent MDR and enhance therapeutic efficacy. To this end, in this study, we synthesized three different sizes of silver nanoparticles (Ag NPs), 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm, functionalized their surface with a monolayer of 11-amino-1-undecanethiol (AUT), and covalently conjugated them with antibiotics (ofloxacin, Oflx) …


A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium Difficile Biofilm And Toxin Production During Stationary Phase, Erin B. Purcell, Robert W. Mckee, David S. Courson, Elizabeth M. Garrett, Shonna M. Mcbride, Richard E. Cheney, Rita Tamayo Jan 2017

A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium Difficile Biofilm And Toxin Production During Stationary Phase, Erin B. Purcell, Robert W. Mckee, David S. Courson, Elizabeth M. Garrett, Shonna M. Mcbride, Richard E. Cheney, Rita Tamayo

Chemistry & Biochemistry Faculty Publications

The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins …


The Relative Contribution Of Methanotrophs To Microbial Communities And Carbon Cycling In Soil Overlying A Coal-Bed Methane Seep, Christopher T. Mills, Gregpry F. Slater, Robert F. Dias, Stephanie A. Carr, Christopher M. Reddy, Raleigh Schmidt, Kevin W. Mandernack Jan 2013

The Relative Contribution Of Methanotrophs To Microbial Communities And Carbon Cycling In Soil Overlying A Coal-Bed Methane Seep, Christopher T. Mills, Gregpry F. Slater, Robert F. Dias, Stephanie A. Carr, Christopher M. Reddy, Raleigh Schmidt, Kevin W. Mandernack

Chemistry & Biochemistry Faculty Publications

Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison …


Electric Pulses To Prepare Feeder Cells For Sustaining And Culturing Of Undifferentiated Embryonic Stem Cells, Lauren M. Browning, Tao Huang, Xiao-Hong Nancy Xu Jan 2010

Electric Pulses To Prepare Feeder Cells For Sustaining And Culturing Of Undifferentiated Embryonic Stem Cells, Lauren M. Browning, Tao Huang, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Current challenges in embryonic-stem-cell (ESC) research include inability of sustaining and culturing of undifferentiated ESCs over time. Growth-arrested feeder cells are essential to the culture and sustaining of undifferentiated ESCs, and they are currently prepared using gammaradiation and chemical inactivation. Both techniques have severe limitations. In this study, we developed a new, simple and effective technique (pulsed-electric-fields, PEFs) to produce viable growth-arrested cells (RTS34st) and used them as high-quality feeder cells to culture and sustain undifferentiated zebrafish ESCs over time. The cells were exposed to 25 sequential 10- nanosecond-electric-pulses (10nsEPs) of 25, 40 and 150 kV/cm with 1s pulse interval, …


Potential For Stimulating Host Anti-Tumor Immune Response Via Rnai-Mediated Local Foxp3 Knockdown, N. Klaiber Jan 2007

Potential For Stimulating Host Anti-Tumor Immune Response Via Rnai-Mediated Local Foxp3 Knockdown, N. Klaiber

Chemistry & Biochemistry Faculty Publications

Neoplastic growths represent a unique challenge for the host immune system. As they are indeed derived from self, many of the same mechanisms operating to prevent autoimmunity also provide an umbrella beneath which malignant cells are free to proliferate.1 Central among these immune regulatory boundaries are an influential subset of lymphocytes known as T regs. Hypothesized to exist decades ago, yet eluding definitive characterization until relatively recently, T regs have been demonstrated to play a crucial role in the proper functioning of the immune system as a whole. They may also, however, represent one of the primary obstacles to successful …


Effect Of Humic Substance Photodegradation On Bacterial Growth And Respiration In Lake Water, Alexandre M. Anesio, William Granéli, George R. Aiken, David J. Kieber, Kenneth Mopper Jan 2005

Effect Of Humic Substance Photodegradation On Bacterial Growth And Respiration In Lake Water, Alexandre M. Anesio, William Granéli, George R. Aiken, David J. Kieber, Kenneth Mopper

Chemistry & Biochemistry Faculty Publications

This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H2 …