Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Life Sciences

The Pseudomonas Aeruginosa Efflux Pump Mexghi-Opmd Transports A Natural Phenazine That Controls Gene Expression And Biofilm Development, Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K. Morales, Blanche Fields, Alexa Price-Whelan, Deborah Hogan Jun 2016

The Pseudomonas Aeruginosa Efflux Pump Mexghi-Opmd Transports A Natural Phenazine That Controls Gene Expression And Biofilm Development, Hassan Sakhtah, Leslie Koyama, Yihan Zhang, Diana K. Morales, Blanche Fields, Alexa Price-Whelan, Deborah Hogan

Dartmouth Scholarship

Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We …


Deletion Of Nfnab In Thermoanaerobacterium Saccharolyticum And Its Effect On Metabolism, Jonathan Lo, Tianyong Zheng, Daniel G. Olson, Natalie Ruppertsberger, Shital Tripathi, Adam Guss, Lee Lynd Jun 2015

Deletion Of Nfnab In Thermoanaerobacterium Saccharolyticum And Its Effect On Metabolism, Jonathan Lo, Tianyong Zheng, Daniel G. Olson, Natalie Ruppertsberger, Shital Tripathi, Adam Guss, Lee Lynd

Dartmouth Scholarship

NfnAB catalyzes the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP+. The NfnAB complex has been hypothesized to be the main enzyme for ferredoxin oxidization in strains of Thermoanaerobacterium saccharolyticum engineered for increased ethanol production. NfnAB complex activity was detectable in crude cell extracts of T. saccharolyticum. Activity was also detected using activity staining of native PAGE gels. The nfnAB gene was deleted in different strains of T. saccharolyticum to determine its effect on end product formation. In wild-type T. saccharolyticum, deletion of nfnAB resulted in a 46% increase in H2 formation but …


Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd May 2015

Cofactor Specificity Of The Bifunctional Alcohol And Aldehyde Dehydrogenase (Adhe) In Wild-Type And Mutant Clostridium Thermocellum And Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Liang Tian, Yannick J. Bomble, Michael Himmel, Jonathan Lo, Shuen Hon, A. Joe Shaw, Johannes P. Van Dijken, Lee Lynd

Dartmouth Scholarship

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. …


Structural Features Of The Pseudomonas Fluorescens Biofilm Adhesin Lapa Required For Lapg-Dependent Cleavage, Biofilm Formation, And Cell Surface Localization, Chelsea D. Boyd, T. Jarrod Smith, Sofiane El-Kirat-Chatel, Peter D. Newell, Yves F. Dufrêne, George A. O'Toole May 2014

Structural Features Of The Pseudomonas Fluorescens Biofilm Adhesin Lapa Required For Lapg-Dependent Cleavage, Biofilm Formation, And Cell Surface Localization, Chelsea D. Boyd, T. Jarrod Smith, Sofiane El-Kirat-Chatel, Peter D. Newell, Yves F. Dufrêne, George A. O'Toole

Dartmouth Scholarship

The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for …


Role Of The Cipa Scaffoldin Protein In Cellulose Solubilization, As Determined By Targeted Gene Deletion And Complementation In Clostridium Thermocellum, Daniel G. Olson, Richard J. Giannone, Robert L. Hettich, Lee R. Lynd Nov 2013

Role Of The Cipa Scaffoldin Protein In Cellulose Solubilization, As Determined By Targeted Gene Deletion And Complementation In Clostridium Thermocellum, Daniel G. Olson, Richard J. Giannone, Robert L. Hettich, Lee R. Lynd

Dartmouth Scholarship

The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In …


Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd Feb 2013

Atypical Glycolysis In Clostridium Thermocellum, Jilai Zhou, Daniel G. Olson, D. Aaron Argyros, Yu Deng, Walter M. Van Gulik, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

Cofactor specificities of glycolytic enzymes in Clostridium thermocellum were studied with cellobiose-grown cells from batch cultures. Intracellular glucose was phosphorylated by glucokinase using GTP rather than ATP. Although phosphofructokinase typically uses ATP as a phosphoryl donor, we found only pyrophosphate (PPi)-linked activity. Phosphoglycerate kinase used both GDP and ADP as phosphoryl acceptors. In agreement with the absence of a pyruvate kinase sequence in the C. thermocellum genome, no activity of this enzyme could be detected. Also, the annotated pyruvate phosphate dikinase (ppdk) is not crucial for the generation of pyruvate from phosphoenolpyruvate (PEP), as deletion of the ppdk gene did …


Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole Jul 2012

Epoxide-Mediated Cifr Repression Of Cif Gene Expression Utilizes Two Binding Sites In Pseudomonas Aeruginosa, Alicia E. Ballok, Christopher D. Bahl, Emily L. Dolben, Allia K. Lindsay, Jessica D. St. Laurent, Deborah Hogan, Dean Madden, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR …


Coordinated Regulation By Agra, Sara, And Sarr To Control Agr Expression In Staphylococcus Aureus, Dindo Reyes, Diego O. Andrey, Antoinette Monod, William L. Kelley, Gongyi Zhang, Ambrose L. Cheung Sep 2011

Coordinated Regulation By Agra, Sara, And Sarr To Control Agr Expression In Staphylococcus Aureus, Dindo Reyes, Diego O. Andrey, Antoinette Monod, William L. Kelley, Gongyi Zhang, Ambrose L. Cheung

Dartmouth Scholarship

The agr locus of Staphylococcus aureus is composed of two divergent transcripts (RNAII and RNAIII) driven by the P2 and P3 promoters. The P2-P3 intergenic region comprises the SarA/SarR binding sites and the four AgrA boxes to which AgrA binds. We reported here the role of AgrA, SarA, and SarR on agr P2 and P3 transcription. Using real-time reverse transcription (RT)-PCR and promoter fusion studies with selected single, double, triple, and complemented mutants, we showed that AgrA is indispensable to agr P2 and P3 transcription, whereas SarA activates and SarR represses P2 transcription. In vitro runoff transcription assays revealed that …


Non-Identity-Mediated Crispr-Bacteriophage Interaction Mediated Via The Csy And Cas3 Proteins, Kyle C. Cady, George A. O'Toole Mar 2011

Non-Identity-Mediated Crispr-Bacteriophage Interaction Mediated Via The Csy And Cas3 Proteins, Kyle C. Cady, George A. O'Toole

Dartmouth Scholarship

Studies of the Escherichia, Neisseria, Thermotoga, and Mycobacteria clustered regularly interspaced short palindromic repeat (CRISPR) subtypes have resulted in a model whereby CRISPRs function as a defense system against bacteriophage infection and conjugative plasmid transfer. In contrast, we previously showed that the Yersinia-subtype CRISPR region of Pseudomonas aeruginosa strain UCBPP-PA14 plays no detectable role in viral immunity but instead is required for bacteriophage DMS3-dependent inhibition of biofilm formation by P. aeruginosa. The goal of this study is to define the components of the Yersinia-subtype CRISPR region required to mediate this bacteriophage-host interaction. We show that the Yersinia-subtype-specific CRISPR-associated (Cas) proteins …


H-Ns Binding And Repression Of The Ctx Promoter In Vibrio Cholerae, Emily A. Stonehouse, Robin R. Hulbert, Melinda B. Nye, Karen Skorupski, Ronald K. Taylor Dec 2010

H-Ns Binding And Repression Of The Ctx Promoter In Vibrio Cholerae, Emily A. Stonehouse, Robin R. Hulbert, Melinda B. Nye, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Expression of the ctx and tcp genes, which encode cholera toxin and the toxin coregulated pilus, the Vibrio cholerae O1 virulence determinants having the largest contribution to cholera disease, is repressed by the nucleoid-associated protein H-NS and activated by the AraC-like transcriptional regulator ToxT. To elucidate the molecular mechanism by which H-NS controls transcription of the ctxAB operon, H-NS repression and binding were characterized by using a promoter truncation series, gel mobility shift assays, and DNase I footprinting. Promoter regions found to be important for H-NS repression correlated with in vitro binding. Four main H-NS binding regions are present at …


Natural Competence In Thermoanaerobacter And Thermoanaerobacterium Species, A Joe Shaw, David A. Hogsett, Lee R. Lynd May 2010

Natural Competence In Thermoanaerobacter And Thermoanaerobacterium Species, A Joe Shaw, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

Low-G+C thermophilic obligate anaerobes in the class Clostridia are considered among the bacteria most resistant to genetic engineering due to the difficulty of introducing foreign DNA, thus limiting the ability to study and exploit their native hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic competence in 13 Thermoanaerobacter and Thermoanaerobacterium strains previously believed to be difficult to transform or genetically recalcitrant.

In Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence- mediated DNA incorporation occurs during the exponential growth phase with both replicating plasmid and homologous recombination-based integration, and circular or linear DNA. In T. saccharolyticum, disruptions of genes similar to …


Role Of Flgt In Anchoring The Flagellum Of Vibrio Cholerae, Raquel M. Martinez, Brooke A. Jude, Thomas J. Kirn, Karen Skorupski, Ronald K. Taylor Apr 2010

Role Of Flgt In Anchoring The Flagellum Of Vibrio Cholerae, Raquel M. Martinez, Brooke A. Jude, Thomas J. Kirn, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Flagellar motility has long been regarded as an important virulence factor. In Vibrio cholerae, the single polar flagellum is essential for motility as well as for proper attachment and colonization. In this study, we demonstrate that the novel flagellar protein FlgT is involved in anchoring the flagellum to the V. cholerae cell. A screen for novel colonization factors by use of TnphoA mutagenesis identified flgT. An in-frame deletion of flgT established that FlgT is required for attachment, colonization, and motility. Transmission electron microscopy revealed that while the flgT mutant is capable of assembling a phenotypically normal flagellum, …


Diversity Of Bacteria And Glycosyl Hydrolase Family 48 Genes In Cellulolytic Consortia Enriched From Thermophilic Biocompost, Javier A. Izquierdo, Maria V. Sizova, Lee R. Lynd Mar 2010

Diversity Of Bacteria And Glycosyl Hydrolase Family 48 Genes In Cellulolytic Consortia Enriched From Thermophilic Biocompost, Javier A. Izquierdo, Maria V. Sizova, Lee R. Lynd

Dartmouth Scholarship

The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured …


Regulation Of The Mazef Toxin-Antitoxin Module In Staphylococcus Aureus And Its Impact On Sigb Expression, Niles P. Donegan, Ambrose L. Cheung Apr 2009

Regulation Of The Mazef Toxin-Antitoxin Module In Staphylococcus Aureus And Its Impact On Sigb Expression, Niles P. Donegan, Ambrose L. Cheung

Dartmouth Scholarship

In Staphylococcus aureus, the sigB operon codes for the alternative sigma factor σBand its regulators that enable the bacteria to rapidly respond to environmental stresses via redirection of transcriptional priorities. However, a full model of σBregulation in S. aureus has not yet emerged. Earlier data has suggested that mazEF, a toxin-antitoxin (TA) module immediately upstream of the sigB operon, was transcribed with the sigB operon. Here we demonstrate that the promoter PmazE upstream of mazEF is essential for full σB activity and that instead of utilizing autorepression typical of TA systems, sigB …


Overexpression Of Mazfsa In Staphylococcus Aureus Induces Bacteriostasis By Selectively Targeting Mrnas For Cleavage, Zhibiao Fu, Sandeep Tamber, Guido Memmi, Niles P. Donegan, Ambrose L. Cheung Jan 2009

Overexpression Of Mazfsa In Staphylococcus Aureus Induces Bacteriostasis By Selectively Targeting Mrnas For Cleavage, Zhibiao Fu, Sandeep Tamber, Guido Memmi, Niles P. Donegan, Ambrose L. Cheung

Dartmouth Scholarship

The role of chromosomally encoded toxin-antitoxin (TA) loci in bacterial physiology has been under debate, with the toxin proposed as either an inducer of bacteriostasis or a mediator of programmed cell death (PCD). We report here that ectopic expression of MazFSa, a toxin of the TA module from Staphylococcus aureus, led to a rapid decrease in CFU counts but most cells remained viable as determined by differential Syto 9 and propidium iodide staining after MazFSa induction. This finding suggested that the toxin MazFSa induced cell stasis rather than cell death. We also showed that MazFSa selectively cleaves cellular mRNAs in …


Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan Oct 2008

Identification Of Two Gene Clusters And A Transcriptional Regulator Required For Pseudomonas Aeruginosa Glycine Betaine Catabolism, Matthew J. Wargo, Benjamin S. Szwergold, Deborah A. Hogan

Dartmouth Scholarship

Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-(13)C-labeled choline …


The Bile Response Repressor Brer Regulates Expression Of The Vibrio Cholerae Breab Efflux System Operon, Francisca A. Cerda-Maira, Carol S. Ringelberg, Ronald K. Taylor Sep 2008

The Bile Response Repressor Brer Regulates Expression Of The Vibrio Cholerae Breab Efflux System Operon, Francisca A. Cerda-Maira, Carol S. Ringelberg, Ronald K. Taylor

Dartmouth Scholarship

Enteric pathogens have developed several resistance mechanisms to survive the antimicrobial action of bile. We investigated the transcriptional profile of Vibrio cholerae O1 El Tor strain C6706 under virulence gene-inducing conditions in the presence and absence of bile. Microarray analysis revealed that the expression of 119 genes was affected by bile. The mRNA levels of genes encoding proteins involved in transport were increased in the presence of bile, whereas the mRNA levels of genes encoding proteins involved in pathogenesis and chemotaxis were decreased. This study identified genes encoding transcriptional regulators from the TetR family (vexR and breR) and …


Integration Host Factor Positively Regulates Virulence Gene Expression In Vibrio Cholerae, Emily Stonehouse, Gabriela Kovacikova, Ronald K. Taylor, Karen Skorupski Apr 2008

Integration Host Factor Positively Regulates Virulence Gene Expression In Vibrio Cholerae, Emily Stonehouse, Gabriela Kovacikova, Ronald K. Taylor, Karen Skorupski

Dartmouth Scholarship

Virulence gene expression in Vibrio cholerae is dependent upon a complex transcriptional cascade that is influenced by both specific and global regulators in response to environmental stimuli. Here, we report that the global regulator integration host factor (IHF) positively affects virulence gene expression in V. cholerae. Inactivation of ihfA and ihfB, the genes encoding the IHF subunits, decreased the expression levels of the two main virulence factors tcpA and ctx and prevented toxin-coregulated pilus and cholera toxin production. IHF was found to directly bind to and bend the tcpA promoter region at an IHF consensus site centered at position 162 …


A Serratia Marcescens Oxyr Homolog Mediates Surface Attachment And Biofilm Formation, Robert M. Q. Shanks, Nicholas A. Stella, Eric J. Kalivoda, Megan R. Doe Aug 2007

A Serratia Marcescens Oxyr Homolog Mediates Surface Attachment And Biofilm Formation, Robert M. Q. Shanks, Nicholas A. Stella, Eric J. Kalivoda, Megan R. Doe

Dartmouth Scholarship

OxyR is a conserved bacterial transcription factor with a regulatory role in oxidative stress response. From a genetic screen for genes that modulate biofilm formation in the opportunistic pathogen Serratia marcescens, mutations in an oxyR homolog and predicted fimbria structural genes were identified. S. marcescens oxyR mutants were severely impaired in biofilm formation, in contrast to the hyperbiofilm phenotype exhibited by oxyR mutants of Escherichia coli and Burkholderia pseudomallei. Further analysis revealed that OxyR plays a role in the primary attachment of cells to a surface. Similar to what is observed in other bacterial species, S. marcescens OxyR …


Bifa, A Cyclic-Di-Gmp Phosphodiesterase, Inversely Regulates Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Sherry L. Kuchma, Kimberly M. Brothers, Judith H. Merritt, Nicole T. Liberati, Frederick M. Ausubel, George A. O'Toole Jun 2007

Bifa, A Cyclic-Di-Gmp Phosphodiesterase, Inversely Regulates Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Sherry L. Kuchma, Kimberly M. Brothers, Judith H. Merritt, Nicole T. Liberati, Frederick M. Ausubel, George A. O'Toole

Dartmouth Scholarship

The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner …


Crystal Structure Of The Vibrio Cholerae Quorum-Sensing Regulatory Protein Hapr, Rukman S. De Silva, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski, F. Jon Kull May 2007

Crystal Structure Of The Vibrio Cholerae Quorum-Sensing Regulatory Protein Hapr, Rukman S. De Silva, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski, F. Jon Kull

Dartmouth Scholarship

Quorum sensing in Vibrio cholerae involves signaling between two-component sensor protein kinases and the response regulator LuxO to control the expression of the master regulator HapR. HapR, in turn, plays a central role in regulating a number of important processes, such as virulence gene expression and biofilm formation. We have determined the crystal structure of HapR to 2.2-Å resolution. Its structure reveals a dimeric, two-domain molecule with an all-helical structure that is strongly conserved with members of the TetR family of transcriptional regulators. The N-terminal DNA-binding domain contains a helix-turn-helix DNA-binding motif and alteration of certain residues in this domain …


Membrane Association And Multimerization Of Tcpt, The Cognate Atpase Ortholog Of The Vibrio Cholerae Toxin-Coregulated-Pilus Biogenesis Apparatus, Shital A. Tripathi, Ronald K. Taylor Apr 2007

Membrane Association And Multimerization Of Tcpt, The Cognate Atpase Ortholog Of The Vibrio Cholerae Toxin-Coregulated-Pilus Biogenesis Apparatus, Shital A. Tripathi, Ronald K. Taylor

Dartmouth Scholarship

The toxin-coregulated pilus (TCP) is one of the major virulence factors of Vibrio cholerae. Biogenesis of this type 4 pilus (Tfp) requires a number of structural components encoded by the tcp operon. TcpT, the cognate putative ATPase, is required for TCP biogenesis and all TCP-mediated functions. We studied the stability and localization of TcpT in cells containing in-frame deletions in each of the tcp genes. TcpT was detectable in each of the biogenesis mutants except the ΔtcpT strain. TcpT was localized to the inner membrane (IM) in a TcpR-dependent manner. TcpR is a predicted bitopic inner membrane protein …


Inverse Regulation Of Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, Judith H. Merritt, Kimberly M. Brothers, George A. O'Toole Mar 2007

Inverse Regulation Of Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, Judith H. Merritt, Kimberly M. Brothers, George A. O'Toole

Dartmouth Scholarship

We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). …


Sara Positively Controls Bap-Dependent Biofilm Formation In Staphylococcus Aureus, María P. Trotonda, Adhar C. Manna, Ambrose L. Cheung, Iñigo Lasa, José R. Penadés Aug 2005

Sara Positively Controls Bap-Dependent Biofilm Formation In Staphylococcus Aureus, María P. Trotonda, Adhar C. Manna, Ambrose L. Cheung, Iñigo Lasa, José R. Penadés

Dartmouth Scholarship

The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and …


Sara Is An Essential Positive Regulator Of Staphylococcus Epidermidis Biofilm Development, Maria A. Tormo, Miguel Marti, Jaione Valle, Adhar C. Manna Apr 2005

Sara Is An Essential Positive Regulator Of Staphylococcus Epidermidis Biofilm Development, Maria A. Tormo, Miguel Marti, Jaione Valle, Adhar C. Manna

Dartmouth Scholarship

Staphylococcus epidermidis biofilm formation is associated with the production of the polysaccharide intercellular adhesin (PIA)--poly-N-acetylglucosamine polysaccharide (PNAG) by the products of the icaADBC operon. Recent evidence indicates that SarA, a central regulatory element that controls the production of Staphylococcus aureus virulence factors, is essential for the synthesis of PIA/PNAG and the ensuing biofilm development in this species. Based on the presence of a sarA homolog, we hypothesized that SarA could also be involved in the regulation of the biofilm formation process in S. epidermidis. To investigate this, we constructed nonpolar sarA deletions in two genetically unrelated S. epidermidis clinical strains, …


A Three-Component Regulatory System Regulates Biofilm Maturation And Type Iii Secretion In Pseudomonas Aeruginosa, Sherry L. Kuchma, John P. Connolly, George A. O'Toole Feb 2005

A Three-Component Regulatory System Regulates Biofilm Maturation And Type Iii Secretion In Pseudomonas Aeruginosa, Sherry L. Kuchma, John P. Connolly, George A. O'Toole

Dartmouth Scholarship

Biofilms are structured communities found associated with a wide range of surfaces. Here we report the identification of a three-component regulatory system required for biofilm maturation by Pseudomonas aeruginosa strain PA14. A transposon mutation that altered biofilm formation in a 96-well dish assay originally defined this locus, which is comprised of genes for a putative sensor histidine kinase and two response regulators and has been designated sadARS. Nonpolar mutations in any of the sadARS genes result in biofilms with an altered mature structure but do not confer defects in growth or early biofilm formation, swimming, or twitching motility. After …


Identification Of Sarv (Sa2062), A New Transcriptional Regulator, Is Repressed By Sara And Mgra (Sa0641) And Involved In The Regulation Of Autolysis In Staphylococcus Aureus, Adhar C. Manna, Susham S. Ingavale, Marybeth Maloney, Willem Van Wamel, Ambrose L. Cheung Aug 2004

Identification Of Sarv (Sa2062), A New Transcriptional Regulator, Is Repressed By Sara And Mgra (Sa0641) And Involved In The Regulation Of Autolysis In Staphylococcus Aureus, Adhar C. Manna, Susham S. Ingavale, Marybeth Maloney, Willem Van Wamel, Ambrose L. Cheung

Dartmouth Scholarship

The expression of genes involved in the pathogenesis of Staphylococcus aureus is known to be controlled by global regulatory loci, including agr, sarA, sae, arlRS, lytSR, and sarA-like genes. Here we described a novel transcriptional regulator called sarV of the SarA protein family. The transcription of sarV is low or undetectable under in vitro conditions but is significantly augmented in sarA and mgrA (norR or rat) (SA0641) mutants. The sarA and mgrA genes act as repressors of sarV expression, as confirmed by transcriptional fusion and Northern analysis data. Purified SarA and MgrA proteins bound specifically to separate regions of the …


Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole Jul 2004

Sadb Is Required For The Transition From Reversible To Irreversible Attachment During Biofilm Formation By Pseudomonas Aeruginosa Pa14, Nicky C. Caiazza, George A. O'Toole

Dartmouth Scholarship

Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation. The transposon insertion carried by the sadB199 mutant was mapped to open reading frame PA5346 of P. aeruginosa PA14 and encodes …


A Dominant-Negative Fur Mutation In Bradyrhizobium Japonicum, Heather P. Benson, Kristin Levier, Mary Lou Guerinot Mar 2004

A Dominant-Negative Fur Mutation In Bradyrhizobium Japonicum, Heather P. Benson, Kristin Levier, Mary Lou Guerinot

Dartmouth Scholarship

In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the furgene repress iron uptake systems and starve for iron, whereas fur mutants fail to …


The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski Aug 2003

The Virulence Activator Apha Links Quorum Sensing To Pathogenesis And Physiology In Vibrio Cholerae By Repressing The Expression Of A Penicillin Amidase Gene On The Small Chromosome, Gabriela Kovacikova, Wei Lin, Karen Skorupski

Dartmouth Scholarship

Activation of the tcpPH promoter on the Vibrio pathogenicity island by AphA and AphB initiates the Vibrio cholerae virulence cascade and is regulated by quorum sensing through the repressive action of HapR on aphA expression. To further understand how the chromosomally encoded AphA protein activates tcpPH expression, site-directed mutagenesis was used to identify the base pairs critical for AphA binding and transcriptional activation. This analysis revealed a region of partial dyad symmetry, TATGCA-N6-TNCNNA, that is important for both of these activities. Searching the V. cholerae genome for this binding site permitted the identification of a second one upstream of a …