Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Dissertations & Theses (Open Access)

Cancer

Articles 1 - 29 of 29

Full-Text Articles in Life Sciences

A Microfluidics-Based Approach For Isolation Of Antigen-Specific Cd8+ T Cells, Meredith Frank Aug 2022

A Microfluidics-Based Approach For Isolation Of Antigen-Specific Cd8+ T Cells, Meredith Frank

Dissertations & Theses (Open Access)

Cancer is a global epidemic: there are predicted to be 200 million new cases this year alone. Almost a quarter of all cancer-related deaths are caused by lung cancer, for which 5-year survival rates are just above 20%. 85% of lung cancer diagnoses are classified as non-small cell lung cancer (NSCLC) for which 5-year survival rates in metastatic disease are less than 10%. Early detection and targeted therapies have improved prognoses, yet relapse is still common among patients.

Immunotherapies that leverage tumor-specific CD8+ cytotoxic T cells have shown great promise for the treatment of NSCLC. However, although highly promising, …


Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung Aug 2021

Understanding The Pathogenesis Of Renal Medullary Carcinoma, Melinda Soeung

Dissertations & Theses (Open Access)

Renal medullary carcinoma (RMC) is a lethal cancer that predominantly affects young individuals with sickle cell trait (SCT). It is not currently understood why RMC only affects certain individuals with SCT. We found that patients with RMC more frequently participated in high-intensity exercise than matched controls. Using mouse models of SCT, we demonstrated the significant increase of renal hypoxia in the right kidney following high- but not moderate-intensity exercise. We also demonstrated in cell culture studies that SMARCB1 is ubiquitinated for proteasome-mediated degradation in hypoxia, and the re-expression of SMARCB1 leads to compromised proliferation in renal cells specifically in the …


Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan Aug 2021

Targeting Plasma Membrane Phosphatidylserine Content To Inhibit Oncogenic Kras Function, Walaa E. Kattan

Dissertations & Theses (Open Access)

The small GTPase KRAS, which is frequently mutated in human cancers, must be localized to the plasma membrane (PM) for biological activity. We recently showed that the KRAS C-terminal membrane anchor exhibits exquisite lipid-binding specificity for select species of phosphatidylserine (PtdSer). We therefore investigated whether reducing PM PtdSer content is sufficient to abrogate KRAS oncogenesis. Oxysterol-related binding proteins ORP5 and ORP8 exchange PtdSer synthesized in the ER for phosphatidylinositol-4-phosphate (PI4P) synthesized in the PM. We show that depletion of ORP5 or ORP8 reduced PM PtdSer levels, resulting in extensive mislocalization of KRAS from the PM. Concordantly, ORP5 or ORP8 depletion …


Assessing Genetic Counselors' Clinical Approach And Practices Regarding Pathogenic/Likely Pathogenic Variant Downgrades, Grant Bonesteele May 2021

Assessing Genetic Counselors' Clinical Approach And Practices Regarding Pathogenic/Likely Pathogenic Variant Downgrades, Grant Bonesteele

Dissertations & Theses (Open Access)

Although rare, variant downgrades from a pathogenic/likely pathogenic (P/LP) variant to a variant of uncertain significance can have a significant impact on patients and their families in the clinical cancer setting. However, there is a lack of literature about how to approach these potentially challenging cases as a genetic counselor. Therefore, we aimed to characterize genetic counselors’ experiences, approach, and practices to variant downgrade cases using an online survey. The survey asked participants how they would approach variant downgrade scenarios involving the CDH1 or ATM genes with variable family histories. Genetic counselors appear to be united in whether they would …


Unraveling Host-Gut Microbiota Dialogue And Its Impact On Response To Immune Checkpoint Blockade, Alexandria Cogdill May 2021

Unraveling Host-Gut Microbiota Dialogue And Its Impact On Response To Immune Checkpoint Blockade, Alexandria Cogdill

Dissertations & Theses (Open Access)

Cancer is a disease with only one degree of separation, affecting one in two men and one in three women in their lifetimes; accounting for 1 of every 6 deaths. While cancer mortality rates continue to improve, incidence rates are expected to rise and shift through 2050 due to epidemiological and demographic transitions worldwide. As such, it is imperative to continue to investigate and improve our understanding of both disease etiology and hallmarks of response to treatment. Currently, conventional therapies include, but are not limited to, surgery, chemotherapy, and radiotherapy. However, within the past decade, major advances have been made …


Mixture Model Approaches To Integrative Analysis Of Multi-Omics Data And Spatially Correlated Genomic Data, Ziqiao Wang May 2021

Mixture Model Approaches To Integrative Analysis Of Multi-Omics Data And Spatially Correlated Genomic Data, Ziqiao Wang

Dissertations & Theses (Open Access)

Integrative genomic data analysis is a powerful tool to study the complex biological processes behind a disease. Statistical methods can model the interrelationships of the involved gene activities through jointly analyzing multiple types of genomic data from different platforms (vertical integration), or improve the power of a study through aggregating the same type of genomic data across studies (horizontal integration). In this dissertation, we propose statistical methods and strategies for integrative multi-omics data in association analysis of disease phenotypes, with an emphasis on cancer applications.

We develop a new strategy based on horizontal integration by leveraging publicly available datasets into …


Investigation Of Proliferation Suppressors In Genetic Fitness Screens, Walter Frank Lenoir Iv Dec 2020

Investigation Of Proliferation Suppressors In Genetic Fitness Screens, Walter Frank Lenoir Iv

Dissertations & Theses (Open Access)

Innovation of CRISPR gene-editing technology has provided scientists genome manipulation tools that allowed rapid advancement of scientific capabilities and thus improved our ability to systematically study mammalian genetic functional profiles. Genome-wide CRISPR knockout screens conducted in collections of human cell lines can knock out genes at multiple loci, and have provided new insights into functional roles for independent genes. This method has launched massive efforts in looking across genetic backgrounds for context specific genetic vulnerabilities within cancer. Much of the research effort thus far has been spent on optimizing phenotype distinctions between essential, genes required for cell fitness, and non-essential, …


Statistical Methods For Resolving Intratumor Heterogeneity With Single-Cell Dna Sequencing, Alexander Davis Aug 2020

Statistical Methods For Resolving Intratumor Heterogeneity With Single-Cell Dna Sequencing, Alexander Davis

Dissertations & Theses (Open Access)

Tumor cells have heterogeneous genotypes, which drives progression and treatment resistance. Such genetic intratumor heterogeneity plays a role in the process of clonal evolution that underlies tumor progression and treatment resistance. Single-cell DNA sequencing is a promising experimental method for studying intratumor heterogeneity, but brings unique statistical challenges in interpreting the resulting data. Researchers lack methods to determine whether sufficiently many cells have been sampled from a tumor. In addition, there are no proven computational methods for determining the ploidy of a cell, a necessary step in the determination of copy number. In this work, software for calculating probabilities from …


Vestigial-Like 1 Is A Shared Targetable Cancer-Placenta Antigen Expressed By Pancreatic And Basal-Like Breast Cancers, Sherille Denae Bradley May 2020

Vestigial-Like 1 Is A Shared Targetable Cancer-Placenta Antigen Expressed By Pancreatic And Basal-Like Breast Cancers, Sherille Denae Bradley

Dissertations & Theses (Open Access)

Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regression by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from tumors of PDAC patients. This led to the identification of a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1), a novel putative TAA demonstrating overexpression in multiple tumor types and low or absent transcript expression in normal tissues with the exception of placenta. VGLL1-specific CTL isolated and expanded from the blood of a male PDAC patient …


Investigating The Role Of Cd109 In Pancreatic Ductal Adenocarcinoma, Mennatallah Shaheen Aug 2019

Investigating The Role Of Cd109 In Pancreatic Ductal Adenocarcinoma, Mennatallah Shaheen

Dissertations & Theses (Open Access)

Pancreatic Ductal Adenocarcinoma (PDAC) is the 3rd leading cause of cancer death in the US. We performed loss of function genomic screening on a cohort of four patient derived PDAC cell populations and our data shows a cell surface receptor CD109 to be a common vulnerability, the biologic role of which in PDAC is yet unstudied and largely unknown. We hypothesized that CD109 expression provides PDAC cells with a survival advantage, and promotes cancer progression through activation of downstream signaling. We believe therefore that targeting CD109 could improve PDAC patients’ survival. Here we report that CD109 plays a role in …


Identifying Pathogenic Variants In Hereditary Cancer Syndrome Genes Via Tumor Molecular Profiling, Carol Nowlen May 2019

Identifying Pathogenic Variants In Hereditary Cancer Syndrome Genes Via Tumor Molecular Profiling, Carol Nowlen

Dissertations & Theses (Open Access)

Tumor molecular profiling is often performed in order to direct cancer treatment options. However, because many of the genes analyzed on tumor molecular profiling overlap with genes known to be associated in the germline with hereditary cancer predisposition syndromes, tumor molecular profiling can unknowingly uncover germline predisposition to cancer development. In this study, we determined the number of patients with pathogenic variants (PVs) identified in BRCA1 and BRCA2 (BRCA1/2) via tumor molecular profiling at The University of Texas MD Anderson Cancer Center, then performed a retrospective chart review to determine the proportion of such patients that received germline …


The Role Of Tumor Suppressor Dear1 In The Acquisition Of Mammary Stem/Progenitor Cell Properties, Uyen Le Dec 2018

The Role Of Tumor Suppressor Dear1 In The Acquisition Of Mammary Stem/Progenitor Cell Properties, Uyen Le

Dissertations & Theses (Open Access)

Breast cancer is the most commonly diagnosed cancer in women in America. Ductal carcinoma in situ (DCIS), one of the earliest pre-invasive forms of invasive ductal carcinoma (IDC), has a 30-50% risk of progressing to IDC. Understanding the mechanisms regulating progression from DCIS to IDC would help identify biomarkers to stratify patients at higher risk of progression or metastasis. Cumulative literature suggests the earliest phase of dissemination from the primary tumor is driven by the epithelial-mesenchymal transition (EMT) program. DEAR1 is a tumor suppressor gene which is mutated, undergoes loss of heterozygosity in breast cancer, and is downregulated in DCIS …


Computational Insights Into The Generation Of Chromosomal Copy Number Changes, Yihua Liu May 2018

Computational Insights Into The Generation Of Chromosomal Copy Number Changes, Yihua Liu

Dissertations & Theses (Open Access)

Deviations from a diploid configuration of the human genome, spanning single genes or entire chromosomes, can have wide-ranging impacts on the variation of human phenotypes, including Mendelian and complex forms of diseases. These chromosomal alterations — such as duplications, deletions or copy-neutral loss-of-heterozygosity — are thus important forms of genetic variation for phenotyping populations of individuals as well as populations of cells. Indeed, copy number variants (CNVs) serve as hallmarks of critical changes in the development of particular diseases such as cancer and thus may be used as biomarkers. These CNVs may be either inherited (transmitted by germ cells, originating …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


Computational Identification Of Noncoding Driver Mutations Based On Impact On Rna Processing, Kevin Zhu Dec 2017

Computational Identification Of Noncoding Driver Mutations Based On Impact On Rna Processing, Kevin Zhu

Dissertations & Theses (Open Access)

Despite the prevalence of mutations in the noncoding regions of the DNA, their effects on cancer development remain largely uninvestigated. This is especially evident when compared to coding mutations, which have been relatively well-studied and, in certain cases, been identified as driver mutations for cancer. Recent studies, however, have identified noncoding mutations that frequently appear in certain types of cancer, which may be evidence that those mutations are important to cancer development. Nonetheless, the role of noncoding mutations in cancer remains unclear. A potential vector for understanding this mechanism is through observing the relation between noncoding mutations and functional RNA …


Clinical And Therapeutic Significance Of Obesity In Melanoma, Jennifer L. Mcquade Aug 2017

Clinical And Therapeutic Significance Of Obesity In Melanoma, Jennifer L. Mcquade

Dissertations & Theses (Open Access)

While the FDA approval of targeted and immune therapies in metastatic melanoma (MM) have dramatically improved outcomes in this disease, de novo and/or acquired resistance can limit the clinical benefit of these agents. The IGF-1/PI3K/AKT pathway has been implicated in resistance to both targeted and immune therapy. The IGF-1/PI3K/AKT pathway has also been shown to play a key role in the pathogenesis of obesity in other malignancies. To date, the impact of energy balance on clinical outcomes and therapeutic response in MM has not been studied. I hypothesized that energy balance would impact the molecular biology, behavior, and drug sensitivity …


Peptide Vaccine Formulation Controls The Duration Of Antigen Presentation And Magnitude Of Tumor‐Specific Cd8+ T Cell Response, Hiep Khong May 2017

Peptide Vaccine Formulation Controls The Duration Of Antigen Presentation And Magnitude Of Tumor‐Specific Cd8+ T Cell Response, Hiep Khong

Dissertations & Theses (Open Access)

Despite remarkable progresses in vaccinology, therapeutic cancer vaccines have not achieved their full potential. We previously showed that the duration of antigen presentation critically affected the quantity and quality of T cell response and subsequent anti‐tumor efficacy. Here we describe L‐tyrosine amino acid‐based microparticles as a novel peptide vaccine adjuvant for the induction of tumor‐specific T cells. L‐tyrosine microparticles did not induce inflammasome activation, but instead extended antigen presentation time. The consequent prolongation in antigen presentation translated into prolonged T cell proliferation and superior numbers and anti‐tumor function of vaccination‐induced CD8+ T cells. Indeed, prolonging antigen presentation by repeated injection …


Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez Aug 2016

Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez

Dissertations & Theses (Open Access)

Cancer is one of the leading causes of death and disease in the world. Considerable resources are spent to study and understand cancer, with the hope of developing new treatments and eventually cures that will help millions of people. Efforts to understand cancer are hindered by its inherent complexity and instability. Nonetheless, understanding the basics of tumor development and progression are the key to focused on studying the role of ΔNp63 in cancer, a p53 family member known to be involved in epithelial development, microRNA biogenesis, and stem cell maintenance. Using the strength of in vivo mouse models, we found …


Gsk3Beta-Mediated Ezh2 Phosphorylation Suppresses Methylation Of H3k27 And Ezh2’S Oncogenic Functions, How-Wen Ko May 2016

Gsk3Beta-Mediated Ezh2 Phosphorylation Suppresses Methylation Of H3k27 And Ezh2’S Oncogenic Functions, How-Wen Ko

Dissertations & Theses (Open Access)

During the process of tumorigenesis, inactivation of tumor suppressors is a critical step. Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and the enzymatic core subunit of polycomb repressive complex 2 (PRC2), promotes cell growth and migration through catalyzing trimethylation of histone H3 at Lys 27 (H3K27me3) and plays an important role in tumorigenesis. Its expression can be controlled by phosphorylation. However, the regulation of EZH2 activity by tumor suppressor kinase is not well understood. Glycogen synthase kinase 3 beta (GSK3b), a multifunctional serine/threonine kinase, is involved in many cellular processes. GSK3b also participates in neoplastic transformation, tumor development …


Nipt Results Indicative Of Maternal Neoplasms: Genetic Counselors' Preferences And Attitudes, Meagan E. Giles May 2016

Nipt Results Indicative Of Maternal Neoplasms: Genetic Counselors' Preferences And Attitudes, Meagan E. Giles

Dissertations & Theses (Open Access)

Performing non-invasive prenatal testing (NIPT) on a pregnant woman with a chromosomally abnormal neoplasm may incidentally lead to the diagnosis of cancer due to the coexistence of circulating tumor and placental DNA. Published information regarding NIPT’s accuracy for neoplasm screening is limited, and guidance for patient management is currently lacking. This challenges clinicians’ ability to counsel patients regarding the implications of these results, which often is the responsibility of a genetic counselor. Over three hundred board-eligible/certified genetic counselors were surveyed regarding their awareness, preferences, and attitudes towards NIPT’s ability to indicate maternal neoplasms. Despite 95% of this cohort being aware …


Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra May 2015

Multilevel Deregulation Of Survival Mechanisms In Npm-Alk+ T-Cell Lymphoma, Deeksha Vishwamitra

Dissertations & Theses (Open Access)

The anaplastic lymphoma kinase (ALK) is a single chain transmembrane receptor tyrosine kinase that belongs to the insulin receptor superfamily. Other members of this superfamily include the insulin receptor (IR), type I insulin-like growth factor receptor (IGF-IR), and the leukocyte tyrosine kinase. The common structural finding among these tyrosine kinases is the YXXXYY motif present within their respective tyrosine kinase domains. Binding of its ligands causes ALK receptor homodimerization and protein kinase activation. ALK has been previously shown to play a significant role during early developmental stages. In human embryos, the expression of ALK is mainly seen in …


Identification Of Cell Signaling Pathway Regulated By Micrornas In Cancer Cells Using A Systems Biological Approach, Sangbae Kim Dec 2014

Identification Of Cell Signaling Pathway Regulated By Micrornas In Cancer Cells Using A Systems Biological Approach, Sangbae Kim

Dissertations & Theses (Open Access)

MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression via imperfect binding of the miRNA to specific sites in the 3' untranslated region of the mRNAs. Because prediction of miRNA targets is an essential step for understanding the functional roles of miRNAs, many computational approaches have been developed to identify miRNA targets. However, identifying targets remains challenging due to the inherent limitation of current prediction approaches based on imperfect complementarity between miRNA and its target mRNAs. To overcome these current limitations, we developed a novel correlation-based approach that is sequence independence to predict functional targets of miRNAs by …


Discovery And Elucidation Of The Fgfr3-Tacc3 Recurrent Fusion In Glioblastoma, Brittany C. Parker Kerrigan Aug 2014

Discovery And Elucidation Of The Fgfr3-Tacc3 Recurrent Fusion In Glioblastoma, Brittany C. Parker Kerrigan

Dissertations & Theses (Open Access)

Fusion genes occur due to chromosomal instability where two previously separate genes rearrange and fuse together, forming a hybrid gene. The first fusions were reported in leukemias; however, with the advent of more powerful sequencing technologies, fusions have recently been reported in several solid tumors. Using next-generation deep sequencing approaches, we discovered a fusion gene connecting the fibroblast growth factor receptor 3 (FGFR3) gene to the transforming coiled-coil containing protein 3 (TACC3) gene in glioblastoma multiforme. The fusion occurred in 8.3% of patient samples, but not in low grade or normal samples. FGFR3-TACC3 produced an in-frame …


Inflammatory Breast Cancer: The Immune Perspective, Evan N. Cohen May 2013

Inflammatory Breast Cancer: The Immune Perspective, Evan N. Cohen

Dissertations & Theses (Open Access)

Inflammatory breast cancer (IBC) is the most insidious form of locally advanced disease. Although rare and less than 2% of all breast cancer, IBC is responsible for up to 10% of all breast cancer deaths. Despite the name, very little is known about the role of inflammation or immune mediators in IBC. Therefore, we analyzed blood samples from IBC patients and non-IBC patients, as well as healthy donor controls to establish an IBC-specific profile of peripheral blood leukocyte phenotype and function of T cells and dendritic cells and serum inflammatory cytokines.

Emerging evidence suggests that host factors in the microenviromement …


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

Dissertations & Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates …


Platelets And Anti-Angiogenic Resistance In Ovarian Carcinoma, Justin N. Bottsford-Miller Aug 2012

Platelets And Anti-Angiogenic Resistance In Ovarian Carcinoma, Justin N. Bottsford-Miller

Dissertations & Theses (Open Access)

Background: Resistance to targeted anti-angiogenic therapy is a growing clinical concern given the disappointing clinical impact of anti-angiogenic. Platelets represent a component of the tumor microenvironment that are implicated in metastasis and represent a significant reservoir of angiogenic regulators. Thrombocytosis has been shown to be caused by malignancy and associated with adverse clinical outcomes, however the causal connections between these associations remain to be identified.

Materials and Methods: Following IRB approval, patient data were collected on patients from four U.S. centers and platelet levels through and after therapy were considered as indicators of recurrence of disease. In vitro effects of …


Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall May 2012

Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall

Dissertations & Theses (Open Access)

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are …


Atm Signaling To Tsc2: Mechanisms And Implications For Cancer Therapy, Angela Alexander May 2011

Atm Signaling To Tsc2: Mechanisms And Implications For Cancer Therapy, Angela Alexander

Dissertations & Theses (Open Access)

Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs …