Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Comparative Genetic Screens In Human Cells Reveal New Regulatory Mechanisms In Wnt Signaling, Andres M. Lebensohn, Ramin Dubey, Leif Neitzel, Ofelia Tacchelly-Benites Dec 2016

Comparative Genetic Screens In Human Cells Reveal New Regulatory Mechanisms In Wnt Signaling, Andres M. Lebensohn, Ramin Dubey, Leif Neitzel, Ofelia Tacchelly-Benites

Dartmouth Scholarship

The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the …


Transcription Factor Binding Profiles Reveal Cyclic Expression Of Human Protein-Coding Genes And Non-Coding Rnas, Chao Cheng, Matthew Ung, Gavin D. Grant, Michael L. Whitfield Jul 2013

Transcription Factor Binding Profiles Reveal Cyclic Expression Of Human Protein-Coding Genes And Non-Coding Rnas, Chao Cheng, Matthew Ung, Gavin D. Grant, Michael L. Whitfield

Dartmouth Scholarship

Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and …


Inhibition Of The Host Translation Shutoff Response By Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy, Kerstin Radtke, Luc English, Christiane Rondeau, David Leib Jan 2013

Inhibition Of The Host Translation Shutoff Response By Herpes Simplex Virus 1 Triggers Nuclear Envelope-Derived Autophagy, Kerstin Radtke, Luc English, Christiane Rondeau, David Leib

Dartmouth Scholarship

Macroautophagy is a cellular pathway that degrades intracellular pathogens and contributes to antigen presentation. Herpes simplex virus 1 (HSV-1) infection triggers both macroautophagy and an additional form of autophagy that uses the nuclear envelope as a source of membrane. The present study constitutes the first in-depth analysis of nuclear envelope-derived autophagy (NEDA). We established LC3a as a marker that allowed us to distinguish between NEDA and macroautophagy in both immunofluorescence and flow cytometry. NEDA was observed in many different cell types, indicating that it is a general response to HSV-1 infection. This autophagic pathway is known to depend on the …


Pv1 Down-Regulation Via Shrna Inhibits The Growth Of Pancreatic Adenocarcinoma Xenografts, Sophie J. Deharvengt, Dan Tse, Olga Sideleva, Caitlin Mcgarry, Jason R. Gunn, Daniel S. Longnecker, Catherine Carriere, Radu V. Stan May 2012

Pv1 Down-Regulation Via Shrna Inhibits The Growth Of Pancreatic Adenocarcinoma Xenografts, Sophie J. Deharvengt, Dan Tse, Olga Sideleva, Caitlin Mcgarry, Jason R. Gunn, Daniel S. Longnecker, Catherine Carriere, Radu V. Stan

Dartmouth Scholarship

PV1 is an endothelial-specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour-bearing mice by single-dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down-regulation by shRNAs inhibits the growth of established tumours derived from two …


Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander Nov 2005

Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander

Dartmouth Scholarship

The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican …


Identification Of A Novel Antiapoptotic Functional Domain In Simian Virus 40 Large T Antigen., Suzanne D. Conzen, Christine A. Snay, Charles N. Cole Jun 1997

Identification Of A Novel Antiapoptotic Functional Domain In Simian Virus 40 Large T Antigen., Suzanne D. Conzen, Christine A. Snay, Charles N. Cole

Dartmouth Scholarship

The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to …


Transactivation Of The Moloney Murine Leukemia Virus And T-Cell Receptor Beta-Chain Enhancers By Cbf And Ets Requires Intact Binding Sites For Both Proteins., Wanwen Sun, Barbara J. Graves, Nancy A. Speck Aug 1995

Transactivation Of The Moloney Murine Leukemia Virus And T-Cell Receptor Beta-Chain Enhancers By Cbf And Ets Requires Intact Binding Sites For Both Proteins., Wanwen Sun, Barbara J. Graves, Nancy A. Speck

Dartmouth Scholarship

The Moloney murine leukemia virus (Mo-MLV) enhancer contains binding sites (LVb and LVc) for the ets gene family of proteins and a core site that binds the polyomavirus enhancer-binding protein 2/core-binding factor (cbf) family of proteins. The LVb and core sites in the Mo-MLV enhancer contribute to its constitutive activity in T cells. All three binding sites (LVb, LVc, and core) are required for phorbol ester inducibility of the Mo-MLV enhancer. Adjacent binding sites for the ets and cbf proteins likewise constitute a phorbol ester response element within the human T-cell receptor beta-chain (TCR beta) enhancer and contribute to constitutive …


Absence Of A Structural Basis For Intracellular Recognition And Differential Localization Of Nuclear And Plasma Membrane-Associated Forms Of Simian Virus 40 Large Tumor Antigen., Donald L. Jarvis, Charles N. Cole, Janet S. Butel Mar 1986

Absence Of A Structural Basis For Intracellular Recognition And Differential Localization Of Nuclear And Plasma Membrane-Associated Forms Of Simian Virus 40 Large Tumor Antigen., Donald L. Jarvis, Charles N. Cole, Janet S. Butel

Dartmouth Scholarship

The simian virus 40 large tumor antigen (T-ag) is found in both the nuclei (nT-ag) and plasma membranes (mT-ag) of simian virus 40-infected or -transformed cells. It is not known how newly synthesized T-ag molecules are recognized, sorted, and transported to their ultimate subcellular destinations. One possibility is that these events depend upon structural differences between nT-ag and mT-ag. To test this possibility, we compared the structures of nT-ag and mT-ag from simian virus 40-infected cells. No differences between the two forms of T-ag were detected by migration in polyacrylamide gels, by Staphylococcus aureus V8 partial proteolytic mapping of methionine- …