Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Horticulture

University of Kentucky

Arabidopsis Proteins

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

An Intergenic Region Shared By At4g35985 And At4g35987 In Arabidopsis Thaliana Is A Tissue Specific And Stress Inducible Bidirectional Promoter Analyzed In Transgenic Arabidopsis And Tobacco Plants, Joydeep Banerjee, Dipak K. Sahoo, Nrisingha Dey, Robert Houtz, Indu B. Maiti Nov 2013

An Intergenic Region Shared By At4g35985 And At4g35987 In Arabidopsis Thaliana Is A Tissue Specific And Stress Inducible Bidirectional Promoter Analyzed In Transgenic Arabidopsis And Tobacco Plants, Joydeep Banerjee, Dipak K. Sahoo, Nrisingha Dey, Robert Houtz, Indu B. Maiti

Kentucky Tobacco Research and Development Center Faculty Publications

On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and …


Substrates Of The Arabidopsis Thaliana Protein Isoaspartyl Methyltransferase 1 Identified Using Phage Display And Biopanning, Tingsu Chen, Nihar Nayak, Susmita Maitra Majee, Jonathan Lowenson, Kim R. Schäfermeyer, Alyssa C. Eliopoulos, Taylor D. Lloyd, Randy Dinkins, Sharyn E. Perry, Nancy R. Forsthoefel, Steven G. Clarke, Daniel M. Vernon, Zhaohui Sunny Zhou, Tomas Rejtar, A. Bruce Downie Nov 2010

Substrates Of The Arabidopsis Thaliana Protein Isoaspartyl Methyltransferase 1 Identified Using Phage Display And Biopanning, Tingsu Chen, Nihar Nayak, Susmita Maitra Majee, Jonathan Lowenson, Kim R. Schäfermeyer, Alyssa C. Eliopoulos, Taylor D. Lloyd, Randy Dinkins, Sharyn E. Perry, Nancy R. Forsthoefel, Steven G. Clarke, Daniel M. Vernon, Zhaohui Sunny Zhou, Tomas Rejtar, A. Bruce Downie

Horticulture Faculty Publications

The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when …