Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Influence Of Stress Treatments On The Resistance Of Lactococcus Lactis To Freezing And Freeze-Drying, Chan Lin May 1998

Influence Of Stress Treatments On The Resistance Of Lactococcus Lactis To Freezing And Freeze-Drying, Chan Lin

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This study investigated the effect of cold, heat, or osmotic shock treatment on the resistance of L. lactis subsp. cremoris MM160 and MM310 and Lactococcus lactis subsp. lactis MM210 and FG2 cheese starter bacteria to freezing and freeze-drying. The ability to withstand freezing at -60°C for 24 h was variable among lactococci, but resistance to this treatment was significantly improved (P < 0.05) in most strains by a 2-h cold shock at l0°C or a 25-min heat shock at 39°C (L. lactis subsp. cremoris) or 42°C (L. lactis subsp. lactis). Stress treatments that improved lactococcal freeze resistance were also found to significantly (P < 0.05) enhance the resistance of most strains to lyophilization. Increased resistance to freezing or lyophilization was not detected when stress treatments were performed in broth that contained erythromycin, which indicated stress-inducible proteins were involved in cell protection. Membrane fatty acid analysis of stress-treated cells suggested that enhanced resistance to freezing and lyophilization may be related to heat or cold shock-induced changes in cell membrane composition. Heat-shocked cells had a higher 19:0 cyclopropane fatty acid content than did control cells, and cold-shocked cells contained a lower ratio of saturated to unsaturated fatty acids. Other factors must also be involved in cell protection, however, because similar changes in membrane composition were also detected in strains whose resistance to freezing and lyophilization was not improved by heat or cold shock.


Characterization Of The Proteolytic System In Lactococcus Lactis Starter Cultures, Christina Beer May 1998

Characterization Of The Proteolytic System In Lactococcus Lactis Starter Cultures, Christina Beer

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The proteolytic system of Lactococcus lactis starter cultures influences both flavor and the characteristic body and texture of cheese. The ability to further understand and control how different components of this proteolytic system work together to hydrolyze milk proteins would be of immense importance to the dairy industry.

The goal of this research was to characterize Lactococcus lactis subsp. lactis starter bacteria with varying prt operon compositions by proteinase specificity, aminopeptidase and lipase activities, growth, and influence on cheese flavor. By using a cheese slurry system, a statistical model to predict milk protein hydrolysis patterns was developed.

Lactococcus lactis subsp. …


Tryptophan Catabolism By Lactobacillus Spp. : Biochemistry And Implications On Flavor Development In Reduced-Fat Cheddar Cheese, Sanjay Gummalla May 1998

Tryptophan Catabolism By Lactobacillus Spp. : Biochemistry And Implications On Flavor Development In Reduced-Fat Cheddar Cheese, Sanjay Gummalla

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Amino acids derived from the degradation of casein in cheese serve as precursors for the generation of key flavor compounds. Microbial degradation of tryptophan (Trp) is thought to promote formation of aromatic compounds that impart putrid fecal or unclean flavors in cheese, but pathways for their production have not been established. This study investigated tryptophan catabolism by Lactobacillus casei LC301 and LC202 and Lactobacillus helveticus CNRZ32 and LH212 cheese flavor adjuncts in carbohydrate starvation (pH 6.5, 30 or 37°C, no sugar) and cheese-like conditions (pH 5.2, 4% NaCl, 15°C, no sugar). Enzyme assays of cell-free extracts revealed both species of …