Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt Sep 2018

Engineered Nanoparticles Interact With Nutrients To Intensify Eutrophication In A Wetland Ecosystem Experiment, Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen De La Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address …


Reducing Equifinality Using Isotopes In A Process-Based Stream Nitrogen Model Highlights The Flux Of Algal Nitrogen From Agricultural Streams, William I. Ford, James F. Fox, Erik Pollock Aug 2017

Reducing Equifinality Using Isotopes In A Process-Based Stream Nitrogen Model Highlights The Flux Of Algal Nitrogen From Agricultural Streams, William I. Ford, James F. Fox, Erik Pollock

Biosystems and Agricultural Engineering Faculty Publications

The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass‐balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic …


Factors Regulating The Growth Of Algae In Continuous Culture In Diluted Secondary Sewage Treatment Plant Effluent And Subsequent Biodegradability, Edward G. Foree, Caroline P. Wade Jan 1972

Factors Regulating The Growth Of Algae In Continuous Culture In Diluted Secondary Sewage Treatment Plant Effluent And Subsequent Biodegradability, Edward G. Foree, Caroline P. Wade

KWRRI Research Reports

Heterogeneous algal cultures were grown in laboratory continuous culture in continuous flow, completely mixed chemostats in secondary sewage treatment plant effluent diluted to give an ammonia nitrogen concentration of 10 mg/1. Variables were lighting, pH, carbon dioxide availability, and hydraulic residence time.

Optimum growth occurred under pH 7.0, excess CO2, and continuous lighting conditions. The availability of artificially supplied excess CO2 greatly increased the mass (standing crop) at steady-state over that produced under otherwise identical conditions for all residence times studied. For the case of excess CO2 availability, the nitrogen concentration in the algal cells regulated …


Algal Growth And Decomposition: Effects On Water Quality, Edward G. Foree, John S. Tapp Jr. Mar 1970

Algal Growth And Decomposition: Effects On Water Quality, Edward G. Foree, John S. Tapp Jr.

KWRRI Research Reports

The chemical composition of algae grown in batch culture depends mainly on environmental conditions, nutrient availability, presence of predators, cell age, and species. The effects of nutrient availability and cell age on the composition of three unialgal cultures (algae + bacteria) and one hetergeneous culture (algae + bacteria + microscopic animals) were evaluated. The cultures were grown in batch culture under both nutrient-abundant and nutrient deficient conditions and the changes in compositions were observed. Luxurious uptake where nutrients are incorporated into cellular protoplasm at levels greater than those necessary for growth, and super-luxurious uptake, where some nutrients are stored rather …