Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab Sep 2021

Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab

Doctoral Dissertations

The purpose of this dissertation was to assess the critical role of extracellular polymeric substances (EPS) in the photogranulation of activated sludge, in a hydrostatic environment. The first section evaluates the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge’s base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The …


Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac Jun 2021

Novel Approaches Towards Improved Purity In High Yield Transcription Reactions, Elvan Cavac

Doctoral Dissertations

High yields of RNA (e.g., mRNA, gRNA, lncRNA) are routinely prepared following a two-step approach: high yield in vitro transcription using T7 RNA polymerase, followed by extensive purification using gel or chromatic methods. In high yield transcription reactions, as RNA accumulates in solution, T7 RNA polymerase rebinds and extends the encoded RNA (using the RNA as a template), resulting in a product pool contaminated with longer than desired, (partially) double stranded impurities. Current purification methods often fail to fully eliminate these impurities which, if present in therapeutics, can stimulate the innate immune response with potentially fatal consequences. This study establishes …


Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby May 2021

Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby

Doctoral Dissertations

Breakthroughs in tissue engineering are moving at a rapid rate especially in the regenerative bone biofabrication. Technology growth in the field of additive manufacturing (AM) such 3D bioprinting which provides the ability to create biocompatible 3D construct on which a cell source could be seeded is an encouraging substitute to autologous grafts.

This present research aims to biofabricate a construct for bone tissue engineering using AM technology. The biocompatible material was chosen corresponding to bones extracellular matrix (ECM) composition, which demonstrates an inorganic and organic development phase: Poly (lactic-glycolic acid) was chosen as the polymeric matrix of the compound, due …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati May 2021

Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati

Doctoral Dissertations

The brain accounts for 20% of overall energy metabolism in the body though it just comprises 2% of the total body mass but has a limited capacity of storing energy unlike other critical organs in the body such as the heart and liver. This energy along with oxygen and nutrients is supplied by cerebral blood flow (CBF), any interruption of which can cease the brain function within seconds with a potential irreversible neuronal injury, within minutes. Vascular cells along with astrocytes and neurons are a part of a recently developed concept known as the Neurovascular Unit responsible for Neurovascular coupling …


Design And Biomechanical Evaluation Of A Clutch-Based Energy Storage And Release Assistive Knee Brace, Ericber Jimenez Francisco Feb 2021

Design And Biomechanical Evaluation Of A Clutch-Based Energy Storage And Release Assistive Knee Brace, Ericber Jimenez Francisco

Doctoral Dissertations

Knee osteoarthritis (OA) is a serious degenerative disease affecting over 240 million people around the world. The most disabling symptoms are joint pain, joint stiffness, and reduction in joint functionality. Medial compartment knee OA is the most common case of unicompartmental knee OA, and pain and progression have been associated with tibiofemoral alignment in early to moderate knee OA patients, mainly due to its association with knee loading as measured by knee adduction moment (KAM) and tibiofemoral contact forces (KCF). Valgization knee braces have been developed to correct the malalignment at the tibiofemoral joint, but they have no direct effect …


Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri Jan 2021

Exposure Assessment Of Emerging Contaminants: Rapid Screening And Modeling Of Plant Uptake, Majid Bagheri

Doctoral Dissertations

"With the advent of new chemicals and their increasing uses in every aspect of our life, considerable number of emerging contaminants are introduced to environment yearly. Emerging contaminants in forms of pharmaceuticals, detergents, biosolids, and reclaimed wastewater can cross plant roots and translocate to various parts of the plants. Long-term human exposure to emerging contaminants through food consumption is assumed to be a pathway of interest. Thus, uptake and translocation of emerging contaminants in plants are important for the assessment of health risks associated with human exposure to emerging contaminants. To have a better understanding over fate of emerging contaminants …