Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Life Sciences

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Mapping Of Auditory Cortical Functions Using Electrocorticography, James Robert Swift Jan 2021

Mapping Of Auditory Cortical Functions Using Electrocorticography, James Robert Swift

Legacy Theses & Dissertations (2009 - 2024)

Communication is a dynamic process through which we translate our inner thoughts in such a way that they can be shared with another person. This complex neurological phenomenon is a key predictor of our productivity and health. When our ability to communicate is compromised, our quality of life suffers. Although numerous methods to investigate the neuroscientific underpinnings of human language exist, our understanding of this process remains incomplete. Improving our understanding of where, when, and how auditory cortical activity occurs can enhance diagnostic techniques and improve treatment methods for neurological conditions that can impact auditory processing, such as epilepsy, or …


Intrabodies Reveal Critical Steps Involved In Ricin's Interactions With The Ribosome, Timothy Francis Czajka Jan 2021

Intrabodies Reveal Critical Steps Involved In Ricin's Interactions With The Ribosome, Timothy Francis Czajka

Legacy Theses & Dissertations (2009 - 2024)

Ricin is a highly lethal protein toxin derived from the seeds of the castor plant, Ricinus communis. It is a Type II ribosome inactivating protein (RIP), meaning it is a heterodimer with one subunit, ricin toxin B (RTB), that mediates cell surface attachment and intracellular trafficking and a second subunit, ricin toxin A (RTA), that irreversibly shuts down protein synthesis in the cytosol. During trafficking, RTA and RTB necessarily separate in the endoplasmic reticulum, wherein RTA unfolds and translocates into the cytosol where it refolds into an enzymatically active conformation. RTA is remarkably fast acting and efficient, with few molecules …


Development Of Chemical Methods For Oligonucleotide Purification, Paramagnetic Labeling And Synthesis Of Dna-Based Advanced Materials, Muhan He Jan 2021

Development Of Chemical Methods For Oligonucleotide Purification, Paramagnetic Labeling And Synthesis Of Dna-Based Advanced Materials, Muhan He

Legacy Theses & Dissertations (2009 - 2024)

This thesis describes a chemical method for alternative oligonucleotide purification that is non-chromatographic and gel-free and allows to routinely synthesize and purify long functional RNA strands. The purification of long RNAs is based on the bio-orthogonal inverse electron demand Diels-Alder (IEDDA) chemistry between trans-cyclooctene (TCO) and tetrazine (Tz). Target oligonucleotide strands are selectively tagged with Tz and can be captured and purified from the failure sequences with immobilized TCO. RNA strands are synthesized on solid support through a photolabile linker to avoid the loss of Tz tag. Purity of the isolated oligonucleotides was evaluated using gel electrophoresis, HPLC and mass …


Statistical Methods To Unravel Cortical Mechanism Of Perception And Response To Auditory Stimuli, Ladan Moheimanian Jan 2020

Statistical Methods To Unravel Cortical Mechanism Of Perception And Response To Auditory Stimuli, Ladan Moheimanian

Legacy Theses & Dissertations (2009 - 2024)

Behavioral responses to auditory stimuli have a critical role in our daily activities. The perception of these stimuli and the generation of appropriate behavioral responses requires the interaction of thousands of neurons in the auditory-motor pathways in the brain. Despite their importance, still many neuroscientific questions about these interactions are remained to be answered. This may result from the limitations of brain recordings as well as statistical methods to analyze brain recordings. In this dissertation, I investigated underlying mechanisms that govern these neural interactions in the auditory-motor pathways using novel statistical techniques applied to the brain recordings from the surface …


Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar Jan 2020

Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar

Legacy Theses & Dissertations (2009 - 2024)

In addition to the traditional biochemical functions, DNA and RNA have been increasingly studied as building blocks for the formation of various 2D and 3D nanostructures. DNA has emerged as a versatile building block for programmable self-assembly. DNA-based nanostructures have been widely applied in biosensing, bioimaging, drug delivery, molecular computation and macromolecular scaffolding. A variety of strategies have been developed to functionalize these nanostructures. The major advantage is that DNA is a very stable molecule and its base-pairing properties can be easily utilized to control and program the formation of desired nanostructures. In addition, some of these DNA/RNA nanostructures have …


Using Systems Archetypes And Generic Structures To Support Water Resource Management Studies : The Case Of Cropping Pattern Change In New Mexico State, Babak Bahaddin Jan 2020

Using Systems Archetypes And Generic Structures To Support Water Resource Management Studies : The Case Of Cropping Pattern Change In New Mexico State, Babak Bahaddin

Legacy Theses & Dissertations (2009 - 2024)

A wide range of managerial problems are similar in nature, and yet they continuously appear in different forms and in different geographical locations. Compared to other sciences, it seems that in the field of management, managers have a hard time facing these similar problems. Part of this issues is caused by the extreme complexity of the systems and another part is caused by the lack of a universal language with which managers can communicate their lessons. This dissertation offers a set of tools that have been previously manufactured in systems science, and more specifically in System Dynamics.


The Brain's Large-Scale Electrophysiological Signals : Fundamental Attributes And Neurosurgical Applications, Mohammad Amin N/A Nourmohammadi Jan 2020

The Brain's Large-Scale Electrophysiological Signals : Fundamental Attributes And Neurosurgical Applications, Mohammad Amin N/A Nourmohammadi

Legacy Theses & Dissertations (2009 - 2024)

Brain’s electrophysiological signals are most certainly the ultimate source for studying the sophisticated neural network inside our cranium. The unparalleled complexity of these biosignalsis the quintessential manifestation of their underlying complicated neurophysiological processes. Studying brain signals on the cellular level provides valuable information regarding the brain’s electrophysiology on the small-scale. However, it is the remarkable network in the large-scale that gives rise to the brain’s extraordinary attributes and exceptional capabilities—perception, cognition, computation, and consciousness are all the emergent byproducts of the dynamic neuronal interactions on the network level. In this sense, the large-scale electrophysiological signals, recorded from the surface of …


Investigation Of The Ms2 Bacteriophage Capsid As An Mri-Capable, Brain-Targeted Nanoparticle Platform, Stephanie M. Curley Jan 2018

Investigation Of The Ms2 Bacteriophage Capsid As An Mri-Capable, Brain-Targeted Nanoparticle Platform, Stephanie M. Curley

Legacy Theses & Dissertations (2009 - 2024)

Novel methods are needed to traverse the blood-brain barrier (BBB) and deliver drugs to specific targets in the brain. To this end, MS2 bacteriophage was explored as a multifunctional transport and targeting vector. The MS2 capsid exterior was modified with two different targeting moieties for delivery across the BBB and targeting specific regions of interest in the brain. Successful modification of MS2 capsids with a brain targeting peptide and NMDAR2D-targeting antibody was confirmed by immunoblotting and fluorescence detection. To measure transport efficiency of MS2 particles across an in vitro BBB model, a highly sensitive RT-qPCR protocol was developed and implemented. …


Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir Jan 2018

Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir

Legacy Theses & Dissertations (2009 - 2024)

Nucleic acid technology along with vast variety of nanomaterials has demonstrated a great potential in many applications from biosensing studies to molecular diagnostics, from biomedical and bioanalytical research to environmental analysis. Especially short single stranded (ss) DNA molecules, called oligonucleotides, are extraordinary biopolymers featuring diverse functionality on the nanoparticles thanks to their high degree of programmability, target-specific binding or cleavage, molecular recognition ability, structure-switching capability, and unique interactions at the bio-nano interfaces. Among those, there have been many biosensing applications utilizing ss DNAs and numerous nanomaterials through various detection techniques such as fluorometric, colorimetric or electrochemical methods. Although many groundbreaking …


Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley Jan 2018

Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley

Legacy Theses & Dissertations (2009 - 2024)

Natural resources useful for the generation of energy are limited. The development of efficient materials capable of utilizing the abundant free solar radiation is of considerable interest. Utilization of otherwise wasted energy sources, including solar radiation, is a progressive step in the quest for sustainable energy. Solar radiation incident upon the earth’s surface exceeds current energy requirements and motivates scientists to investigate and develop functional devices and nanomaterials including light harvesting complexes (LHC) capable of capturing solar radiation for energy conversion and storage.


Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu Jan 2018

Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu

Legacy Theses & Dissertations (2009 - 2024)

Despite the advance health care, devastating health conditions such as cancer and infectious diseases that affect populations worldwide are too often not diagnosed until morbid symptoms become apparent in the late phase. Obtaining an early and accurate diagnosis that reveal a hidden lethal threat before the disease becomes complicated may dramatically reduce the severity of its impact on the patient’s life and increase the probability of survival. For example, in the case of ovarian cancer, which is the fifth most common malignancy and the fifth leading cause of cancer mortality in women in the US, the 5-year relative survival is …


Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper Jan 2017

Novel Approaches To Mitigating Bacterial Biofilm Formation And Intercellular Communication, Stephen Kasper

Legacy Theses & Dissertations (2009 - 2024)

Long thought of as solitary single-cell organisms, it is now widely accepted that bacteria can act and cooperate as social organisms. Phenomena such as biofilm formation and quorum sensing (QS) are two intimately intertwined cooperative behaviors that significantly contribute to the pathogenesis of many bacteria. Biofilms are surface associated communities of bacteria encased in a secreted extracellular matrix, which provides several advantages over an individualized lifestyle, such as increased protection from antimicrobial agents as well as enhanced opportunity for the exchange of genetic material. Bacterial QS is a system of population-based communication through the production, sensing, and response to chemical …


Detecting And Analyzing Trna Modification Systems And Homologs Using In Silico And Colorectal Cancer Models, Khadijah Onanuga Jan 2017

Detecting And Analyzing Trna Modification Systems And Homologs Using In Silico And Colorectal Cancer Models, Khadijah Onanuga

Legacy Theses & Dissertations (2009 - 2024)

tRNA modifications can be considered epitranscriptomic signaling components that regulate translation and play integral roles in stress response pathways. As such, tRNA modification enzymes have roles in cancer etiology and potential utility as biomarkers of pathological states. For my thesis project I have used computational and wet bench approaches to study tRNA modification systems. Chapter two of my thesis deals with tRNA modification detection, as current methods are costly, time consuming, and require RNA fragmentation. I present a single-molecule-based approach for RNA modification detection, which involves in slico studies using a 5-layered graphene nanopore. Our simulations using a 1.5 nm …


Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction For Molecular Diagnostics And Bioanalytical Applications, Md Muhit Rana Jan 2017

Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction For Molecular Diagnostics And Bioanalytical Applications, Md Muhit Rana

Legacy Theses & Dissertations (2009 - 2024)

DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner.


Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn Jan 2017

Profiling Resistance To P450-Activated Food Carcinogens Using Toxicogenomic Approaches In Budding Yeast, Nicholas Stjohn

Legacy Theses & Dissertations (2009 - 2024)

The human response to environmental carcinogens, some of which require metabolic activation, is highly variable. Factors such as environment, lifestyle, and genetics all influence the rates of exposure to and ultimate bioactivation of these compounds. Genetic factors include mutations to cell-cycle regulation, cell proliferation, and DNA repair genes; however, epidemiological studies may lack significance due to inadequate patient numbers. We used budding yeast as a model organism to determine genetic susceptibility to food-associated carcinogens, including aflatoxin (AFB1) and heterocyclic aromatic amines (HAAs). Budding yeast does not contain P450s that activate these compounds, so expression vectors were induced that contain human …


Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth Jan 2016

Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth

Legacy Theses & Dissertations (2009 - 2024)

The field of medicinal chemistry is ever expanding, designing and discovering new therapeutic strategies. Oftentimes, it is challenging for these therapeutics to undergo clinical translation due to ineffective administration or unwanted toxicity in vivo. As such, drug delivery vehicles are designed to overcome these hurdles, allowing for delivery to the site of action by improving biodistribution, protecting therapeutic cargo, and decreasing toxicity. The work presented here aims to investigate a naturally-derived carbohydrate nanodendrimer, enzymatically synthesized glycogen (ESG) for drug delivery. This nontoxic, highly-branched, glucose-based structure has interior void volumes to allow for cargo encapsulation as well as a large density …


Restriction And Characterization Of Human Breast Cancer Using A Three-Dimensional Embryonic Stem Cell Model, Bridget Mooney Jan 2016

Restriction And Characterization Of Human Breast Cancer Using A Three-Dimensional Embryonic Stem Cell Model, Bridget Mooney

Legacy Theses & Dissertations (2009 - 2024)

Human breast cancer is currently the highest diagnosed form of cancer and the second leading cause of cancer-related deaths in American women. Triple negative breast cancer is of the basal subtype and displays the worst prognosis owing to its highly metastatic properties. Current treatments focused on eradicating breast tumors in lieu of or following local therapy include chemotherapy, hormonal therapy, and targeted therapy. Hormonal therapy is not an option for triple negative breast cancer as it does not contain hormone receptors and there are currently no approved biological targeted therapies. Chemotherapy has proven unsuccessful because triple negative breast cancer is …


The Gammaturc Nanomachine Mechanism And Future Applications, Timothy Riehlman Jan 2016

The Gammaturc Nanomachine Mechanism And Future Applications, Timothy Riehlman

Legacy Theses & Dissertations (2009 - 2024)

The complexity and precision of the eukaryotic cell’s cytoskeletal network is unrivaled by any man-made systems, perfected by billions of years of evolution, mastering elegant processes of self-assembly, error correction, and self-repair. Understanding the capabilities of these networks will have important and far reaching applications in human medicine by aiding our understanding of developmental processes, cellular division, and disease mechanisms, and through biomimicry will provide insights for biosynthetic manufacturing at the nanoscale and across scales. My research utilizes cross species techniques from Human to the model organism of Fission Yeast to investigate the structure and mechanisms of the g-tubulin ring …


Understanding Transcriptional Enhancement In Monoclonal Antibody-Producing Chinese Hamster Ovary Cells, Sarah E. Nicoletti Jan 2015

Understanding Transcriptional Enhancement In Monoclonal Antibody-Producing Chinese Hamster Ovary Cells, Sarah E. Nicoletti

Legacy Theses & Dissertations (2009 - 2024)

With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA …


Characterization Of Metallic And Semimetallic Oxide Nanoparticles In Industrial Wastewater And Associated Toxicity, Gary Roth Jan 2015

Characterization Of Metallic And Semimetallic Oxide Nanoparticles In Industrial Wastewater And Associated Toxicity, Gary Roth

Legacy Theses & Dissertations (2009 - 2024)

Engineered nanomaterials (ENMs) play an increasing role in manufacturing and consumer products. Currently, there is no standard approach to studying ENM toxicity, and a growing body of literature suggests that ENMs may have toxicity differing from similar compounds in bulk or dissolved form. I examined ENMs used in the semiconductor manufacturing process called chemical-mechanical planarization (CMP) for their properties, removal in the wastewater treatment system (WWT), in-vitro toxicity, and location post-inhalation in-vivo. It was found that ENMs in CMP slurries have morphology determined by their elemental composition, but assessment of size and concentration can differ substantially between accepted techniques. Particles …


Brown Adipogenesis Of Mouse Embryonic Stem Cells In Alginate Microstrands, Andrea Mannarino Unser Jan 2015

Brown Adipogenesis Of Mouse Embryonic Stem Cells In Alginate Microstrands, Andrea Mannarino Unser

Legacy Theses & Dissertations (2009 - 2024)

The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes …


Exposure Assessment And Risk Management Of Engineered Nanoparticles : Investigation In Semiconductor Wafer Processing, Michele Shepard Jan 2014

Exposure Assessment And Risk Management Of Engineered Nanoparticles : Investigation In Semiconductor Wafer Processing, Michele Shepard

Legacy Theses & Dissertations (2009 - 2024)

Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations.


Genomic And Physical Analysis Of Rnr1-Containing Autophagosomes During Environmental Stress, Tamir Danon Jan 2014

Genomic And Physical Analysis Of Rnr1-Containing Autophagosomes During Environmental Stress, Tamir Danon

Legacy Theses & Dissertations (2009 - 2024)

Physical & Genetic Analysis of Rnr1 autophagosomes during the DNA damage response


Ph Regulation And The Assessment Of Renal Injury Biomarkers In A Warm Perfusion Renal Allograft Preservation System, Aaron Meyer Jan 2014

Ph Regulation And The Assessment Of Renal Injury Biomarkers In A Warm Perfusion Renal Allograft Preservation System, Aaron Meyer

Legacy Theses & Dissertations (2009 - 2024)

A shortage of viable kidneys available for transplantation exists today, as the number of individuals waiting for a kidney transplant continues to grow while the number of kidneys available each year for transplantation has remained stagnant. The development of technology that will allow for transplantation of organs that currently may be considered too damaged for transplant will provide access to a large number of donors who have experienced traumatic injury deaths resulting in loss of cardiac function. These potential donors account for the majority of all traumatic injury deaths in intensive care units, however their organs have experienced a degree …


The Localized Manipulation Of The Extracellular Matrix Within 3d Collagen Cell Cultures Using A Biomems Device, Ashley N. Clark Jan 2013

The Localized Manipulation Of The Extracellular Matrix Within 3d Collagen Cell Cultures Using A Biomems Device, Ashley N. Clark

Legacy Theses & Dissertations (2009 - 2024)

Approximately 90% of all cancer related deaths can be attributed to the occurrence of metastasis. There are multiple changes that occur within the tumor microenvironment that have been correlated with the onset of metastasis. Different cell types, extracellular matrices, blood vessels, and soluble factors are some of the various components that make up the complex, heterogeneous microenvironment that exists within a tumor. The dynamic relationship between tumor cells and their surrounding environment makes it an ideal environment to study triggers of metastasis, such as the modification of the extracellular matrix. Changes in the multiple aspects of extracellular matrix composition have …


Microfluidic-Assisted Atomic Force Microscopy For The Mechanical Characterization Of Soft Biological Materials, Aaron Peter Mosier Jan 2013

Microfluidic-Assisted Atomic Force Microscopy For The Mechanical Characterization Of Soft Biological Materials, Aaron Peter Mosier

Legacy Theses & Dissertations (2009 - 2024)

Viable methods for bacterial biofilm remediation require a fundamental understanding of biofilm mechanical properties and their dependence on dynamic environmental conditions. Mechanical test data, quantifying elasticity or adhesion, may be used to perform physical modeling of biofilm behavior, thus enabling the development of novel remediation strategies. To achieve real-time, dynamic measurements of these properties, a novel analysis platform consisting of a microfluidic flowcell device has been designed and fabricated for in situ analysis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The flowcell consists of microfluidic channels for biofilm establishment that are then converted into an open …


Virus Capsids As Nanoscale Delivery Vessels Of Photoactive Compounds For Site-Specific Photodynamic Therapy, Brian Alexander Cohen Jan 2012

Virus Capsids As Nanoscale Delivery Vessels Of Photoactive Compounds For Site-Specific Photodynamic Therapy, Brian Alexander Cohen

Legacy Theses & Dissertations (2009 - 2024)

The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed …


Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia Jan 2012

Micropatterned Electrospun Nanofibrous Substrates As Scaffolds For Engineered Salivary Glands, David Alexander Soscia

Legacy Theses & Dissertations (2009 - 2024)

The salivary gland is a complex organ exhibiting a branching, 3-dimensional structure made up of acinar (saliva-producing), and ductal (saliva transporting and modifying) epithelial cells. The high surface area of the gland allows it to efficiently provide the mouth with saliva, maintaining oral cleanliness and comfort. Salivary gland hypofunction, a significant clinical problem often caused by the autoimmune disease Sjögren's syndrome or head and neck radiation for cancer patients, affects millions of Americans and is characterized by a loss of function of salivary gland acinar cells. Chronic xerostomia, or dry mouth, arises as a result of salivary gland hypofunction and …


The Formation And Distribution Of Hippocampal Synapses On Patterned Neuronal Networks, Natalie Michelle Dowell-Mesfin Jan 2011

The Formation And Distribution Of Hippocampal Synapses On Patterned Neuronal Networks, Natalie Michelle Dowell-Mesfin

Legacy Theses & Dissertations (2009 - 2024)

ABSTRACT