Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Subcellular And In-Vivo Nano-Endoscopy, Surya Venkatasekhar Cheemalapati, John Winskas, Hao Wang, Karthik Konnaiyan, Arseny Zhdanov, Alison Roth, Swamy Rakesh Adapa, Andrew Deonarine, Rays H. Y. Jiang, Anna Pyayt Oct 2016

Subcellular And In-Vivo Nano-Endoscopy, Surya Venkatasekhar Cheemalapati, John Winskas, Hao Wang, Karthik Konnaiyan, Arseny Zhdanov, Alison Roth, Swamy Rakesh Adapa, Andrew Deonarine, Rays H. Y. Jiang, Anna Pyayt

Chemical, Biological and Materials Engineering Faculty Publications

Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency. Here we present a nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted signal for spectral analysis. Finite Difference Time Domain (FDTD) simulations have shown that with an optimized nanoendoscope taper profile, the light emission and collection was localized within ~100 nm. …


Salinity Gradient Power (Sgp): A Developmental Roadmap Covering Existing Generation Technologies And Recent Investigative Results Into The Feasibility Of Bipolar Membrane-Based Salinity Gradient Power Generation, Clifford R. Merz, Wilfrido A. Moreno, Marilyn Barger, Stephen M. Lipka Jan 2012

Salinity Gradient Power (Sgp): A Developmental Roadmap Covering Existing Generation Technologies And Recent Investigative Results Into The Feasibility Of Bipolar Membrane-Based Salinity Gradient Power Generation, Clifford R. Merz, Wilfrido A. Moreno, Marilyn Barger, Stephen M. Lipka

Marine Science Faculty Publications

Besides wind and solar-based renewable energy technologies, marine sources are being actively discussed. Sources of marine renewable energy traditionally have included ocean currents, ocean waves, tides, thermal gradients, and salinity gradients. Salinity gradient power (SGP) is an attractive marine renewable resource because it possesses not only the largest energy potential but likely the largest total available resource as well. SGP is instantly available when diluted and concentrated ionic solutions are mixed; is renewable, sustainable, and produces no CO2 emissions or other significant effluents that may interfere with global climate. The ultimate challenge is in the economics of the recovery …