Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Utah State University

Water

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Modeling The Alkaline Hydrolysis Of Diaryl Sulfate Diesters: A Mechanistic Study, Klaudia Szeler, Nicholas H. Williams, Alvan C. Hengge, Shina C. Kamerlin Apr 2020

Modeling The Alkaline Hydrolysis Of Diaryl Sulfate Diesters: A Mechanistic Study, Klaudia Szeler, Nicholas H. Williams, Alvan C. Hengge, Shina C. Kamerlin

Chemistry and Biochemistry Faculty Publications

Phosphate and sulfate esters have important roles in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider the impact of the computational model on computed linear free-energy relationships (LFER) and the nature of the transition states (TS) involved. We obtain good …


Molecular Rotation In 3 Dimensions At An Air/Water Interface Using Femtosecond Time Resolved Sum Frequency Generation, Yi Rao, Yuqin Qian, Gang-Hua Deng, Ashlie Kinross, Nicholas J. Turro, Kenneth B. Eisenthal Mar 2019

Molecular Rotation In 3 Dimensions At An Air/Water Interface Using Femtosecond Time Resolved Sum Frequency Generation, Yi Rao, Yuqin Qian, Gang-Hua Deng, Ashlie Kinross, Nicholas J. Turro, Kenneth B. Eisenthal

Chemistry and Biochemistry Faculty Publications

This paper presents the first study of the rotations of rigid molecules in 3 dimensions at the air/water interface, using the femtosecond time resolved sum frequency generation (SFG) technique. For the purpose of this research, the aromatic dye molecule C153 was chosen as an example of a molecule having two functional groups that are SFG active, one being the hydrophilic −−C==O group and the other the hydrophobic −−CF3 group. From polarized SFG measurements, the orientations of the two chromophores with respect to the surface normal were obtained. On combining these results with the known relative orientation of the two …