Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Gene expression

Biology Faculty Publications and Presentations

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Modulation Of Bacterial Fitness And Virulence Through Antisense Rnas, Jess A. Millar, Rahul Raghavan Feb 2021

Modulation Of Bacterial Fitness And Virulence Through Antisense Rnas, Jess A. Millar, Rahul Raghavan

Biology Faculty Publications and Presentations

Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated as RNA, and as RNAs that require other RNAs or RNA binding proteins for stability and activity. We explore how as RNAs improve bacterial fitness …


Transcriptomic Analysis Of Maternally Provisioned Cues For Phenotypic Plasticity In The Annual Killifish, Austrofundulus Limnaeus, Amie L. Romney, Jason E. Podrabsky Apr 2017

Transcriptomic Analysis Of Maternally Provisioned Cues For Phenotypic Plasticity In The Annual Killifish, Austrofundulus Limnaeus, Amie L. Romney, Jason E. Podrabsky

Biology Faculty Publications and Presentations

Background: Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifsh Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to “escape” from diapause and develop directly by both maternal …