Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Dartmouth College

2005

Metabolism

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap Dec 2005

Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap

Dartmouth Scholarship

Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently …


Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander Nov 2005

Growth Factor–Induced Shedding Of Syndecan-1 Confers Glypican-1 Dependence On Mitogenic Responses Of Cancer Cells, Kan Ding, Martha Lopez-Burks, José A. Sánchez-Duran, Murray Korc, Arthur D. Lander

Dartmouth Scholarship

The cell surface heparan sulfate proteoglycan (HSPG) glypican-1 is up-regulated by pancreatic and breast cancer cells, and its removal renders such cells insensitive to many growth factors. We sought to explain why the cell surface HSPG syndecan-1, which is also up-regulated by these cells and is a known growth factor coreceptor, does not compensate for glypican-1 loss. We show that the initial responses of these cells to the growth factor FGF2 are not glypican dependent, but they become so over time as FGF2 induces shedding of syndecan-1. Manipulations that retain syndecan-1 on the cell surface make long-term FGF2 responses glypican …


Calmodulin And Pf6 Are Components Of A Complex That Localizes To The C1 Microtubule Of The Flagellar Central Apparatus, Matthew J. Wargo, Erin E. Dymek, Elizabeth F. Smith Jul 2005

Calmodulin And Pf6 Are Components Of A Complex That Localizes To The C1 Microtubule Of The Flagellar Central Apparatus, Matthew J. Wargo, Erin E. Dymek, Elizabeth F. Smith

Dartmouth Scholarship

Studies of flagellar motility in Chlamydomonas mutants lacking specific central apparatus components have supported the hypothesis that the inherent asymmetry of this structure provides important spatial cues for asymmetric regulation of dynein activity. These studies have also suggested that specific projections associated with the C1 and C2 central tubules make unique contributions to modulating motility; yet, we still do not know the identities of most polypeptides associated with the central tubules. To identify components of the C1a projection, we took an immunoprecipitation approach using antibodies generated against PF6. The pf6 mutant lacks the C1a projection and possesses flagella that only …


Crystal Structure Of The Gtpase Domain Of Rat Dynamin 1, Thomas F. Reubold, Susanne Eschenburg, Andreas Becker, Marilyn Leonard, Sandra L. Schmid, Richard B. Vallee, F. Jon Kull, Dietmar J. Manstein Jan 2005

Crystal Structure Of The Gtpase Domain Of Rat Dynamin 1, Thomas F. Reubold, Susanne Eschenburg, Andreas Becker, Marilyn Leonard, Sandra L. Schmid, Richard B. Vallee, F. Jon Kull, Dietmar J. Manstein

Dartmouth Scholarship

Here, we present the 1.9-A crystal structure of the nucleotide-free GTPase domain of dynamin 1 from Rattus norvegicus. The structure corresponds to an extended form of the canonical GTPase fold observed in Ras proteins. Both nucleotide-binding switch motifs are well resolved, adopting conformations that closely resemble a GTP-bound state not previously observed for nucleotide-free GTPases. Two highly conserved arginines, Arg-66 and Arg-67, greatly restrict the mobility of switch I and are ideally positioned to relay information about the nucleotide state to other parts of the protein. Our results support a model in which switch I residue Arg-59 gates GTP binding …