Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross Nov 2011

Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that …


Geometric Constraints And The Anatomical Interpretation Of Twisted Plant Organ Phenotypes, Renate Weizbauer, Winfried S. Peters, Burkhard Schulz Oct 2011

Geometric Constraints And The Anatomical Interpretation Of Twisted Plant Organ Phenotypes, Renate Weizbauer, Winfried S. Peters, Burkhard Schulz

Winfried S. Peters

The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell …


Micrornas Are Independent Predictors Of Outcome In Diffuse Large B-Cell Lymphoma Patients Treated With R-Chop, Goldi Kozloski Apr 2011

Micrornas Are Independent Predictors Of Outcome In Diffuse Large B-Cell Lymphoma Patients Treated With R-Chop, Goldi Kozloski

Goldi A Kozloski

PURPOSE:
Diffuse large B-cell lymphoma (DLBCL) heterogeneity has prompted investigations for new biomarkers that can accurately predict survival. A previously reported 6-gene model combined with the International Prognostic Index (IPI) could predict patients' outcome. However, even these predictors are not capable of unambiguously identifying outcome, suggesting that additional biomarkers might improve their predictive power.
EXPERIMENTAL DESIGN:
We studied expression of 11 microRNAs (miRNA) that had previously been reported to have variable expression in DLBCL tumors. We measured the expression of each miRNA by quantitative real-time PCR analyses in 176 samples from uniformly treated DLBCL patients and correlated the results to …


Novel Interactors And A Role For Supervillin In Early Cytokinesis, Tara Smith, Zhiyou Fang, Elizabeth Luna Mar 2011

Novel Interactors And A Role For Supervillin In Early Cytokinesis, Tara Smith, Zhiyou Fang, Elizabeth Luna

Elizabeth J. Luna

Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, …


The Membrane-Associated Protein, Supervillin, Accelerates F-Actin-Dependent Rapid Integrin Recycling And Cell Motility, Zhiyou Fang, Norio Takizawa, Korey Wilson, Tara Smith, Anna Delprato, Michael Davidson, David Lambright, Elizabeth Luna Mar 2011

The Membrane-Associated Protein, Supervillin, Accelerates F-Actin-Dependent Rapid Integrin Recycling And Cell Motility, Zhiyou Fang, Norio Takizawa, Korey Wilson, Tara Smith, Anna Delprato, Michael Davidson, David Lambright, Elizabeth Luna

Elizabeth J. Luna

In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown …


Sfrp1 Reduction Results In An Increased Sensitivity To Tgf-Β Signaling, Sallie Smith Schneider, Kelly Gauger, Kerry Chenausky, Molly Murray Feb 2011

Sfrp1 Reduction Results In An Increased Sensitivity To Tgf-Β Signaling, Sallie Smith Schneider, Kelly Gauger, Kerry Chenausky, Molly Murray

Sallie W Smith Schneider

Background Transforming growth factor (TGF)-β plays a dual role during mammary gland development and tumorigenesis and has been shown to stimulate epithelial-mesenchymal transition (EMT) as well as cellular migration. The Wnt/β-catenin pathway is also implicated in EMT and inappropriate activation of the Wnt/β-catenin signaling pathway leads to the development of several human cancers, including breast cancer. Secreted frizzled-related protein 1 (SFRP1) antagonizes this pathway and loss of SFRP1 expression is frequently observed in breast tumors and breast cancer cell lines. We previously showed that when SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells (TERT-siSFRP1) acquire characteristics …


Impact Of The Solvent Capacity Constraint On E. Coli Metabolism, Alexei Vazquez, Qasim Beg, Marcio Demenezes, Jason Ernst, Ziv Bar-Joseph, Albert-László Barabási, László Boros, Zoltán Oltvai Jan 2011

Impact Of The Solvent Capacity Constraint On E. Coli Metabolism, Alexei Vazquez, Qasim Beg, Marcio Demenezes, Jason Ernst, Ziv Bar-Joseph, Albert-László Barabási, László Boros, Zoltán Oltvai

Albert-László Barabási

Background: Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it limits the solvent capacity available to metabolic enzymes. Results: Using a recently introduced flux balance modeling framework (FBAwMC) here we demonstrate that this constraint determines a metabolic switch in E. coli cells when they are shifted from low to high growth rates. The switch is characterized by a change in effective optimization strategy, the excretion of acetate at high growth rates, and a …


Intracellular Invasion Of Green Algae In A Salamander Host, Ryan Kerney, Eunsoo Kim, Roger Hangater, Aaron Heiss, Cory Bishop, Brian Hall Dec 2010

Intracellular Invasion Of Green Algae In A Salamander Host, Ryan Kerney, Eunsoo Kim, Roger Hangater, Aaron Heiss, Cory Bishop, Brian Hall

Ryan Kerney

The association between embryos of the spotted salamander (Ambystoma maculatum) and green algae (“Oophila amblystomatis” Lamber ex Printz) has been considered an ectosymbiotic mutualism. We show here, however, that this symbiosis is more intimate than previously reported. A combination of imaging and algal 18S rDNA amplification reveals algal invasion of embryonic salamander tissues and cells during development. Algal cells are detectable from embryonic and larval Stages 26–44 through chlorophyll autofluorescence and algal 18S rDNA amplification. Algal cell ultrastructure indicates both degradation and putative encystment during the process of tissue and cellular invasion. Fewer algal cells were detected in later-stage larvae …


Symbioses Between Salamander Embryos And Green Algae, Ryan Kerney Dec 2010

Symbioses Between Salamander Embryos And Green Algae, Ryan Kerney

Ryan Kerney

The symbiosis between Ambystoma maculatum (spotted salamander) embryos and green algae was initially described over 120 years ago. Algae populate the egg capsules that surround individual A. maculatum embryos, giving the intracapsular fluid a characteristic green hue. Early work established this symbiosis to be a mutualism, while subsequent studies sought to identify the material benefits of this association to both symbiont and host. These studies have shown that salamander embryos benefit from increased oxygen concentrations provided by their symbiotic algae. The algae, in turn, may benefit from ammonia excreted by the embryos. All of these early studies considered the associ- …