Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

Characterizing The Effects Of Repetitive Head Trauma In Female Soccer Athletes For Prevention Of Mild Traumatic Brain Injury, Diana Otero Svaldi Dec 2016

Characterizing The Effects Of Repetitive Head Trauma In Female Soccer Athletes For Prevention Of Mild Traumatic Brain Injury, Diana Otero Svaldi

Open Access Dissertations

As participation in women’s soccer continues to grow and the longevity of female athletes’ careers continues to increase, prevention of mTBI in women’s soccer has become a major concern for female athletes as the long-term risks associated with a history of mTBI are well documented. Among women’s sports, soccer exhibits the highest concussion rates, on par with those of men’s football at the collegiate level. Head impact monitoring technology has revealed that “concussive hits” occurring directly before symptomatic injury are not predictive of mTBI, suggesting that the cumulative effect of repetitive head impacts experienced by collision sport athletes should be …


Influence Of The 3d Microenvironment On Glioblastoma Migration And Drug Response, Ruth Marisol Herrera Perez Apr 2016

Influence Of The 3d Microenvironment On Glioblastoma Migration And Drug Response, Ruth Marisol Herrera Perez

Open Access Dissertations

Glioblastoma (GBM) is a highly invasive brain cancer characterized by poor prognosis. Despite significant efforts by the basic and clinical research community our understanding of GBM progression and recurrence has been incremental. Improvements in therapeutic response have been dismal, and GBM continues to be the deadliest tumor of the central nervous system, with patient average survival rate of 12 months. Synergistic relationships that the tumor cells establish with the brain microenvironment have been proven fundamental for successful tumor progression and maintenance. Yet, many in vitro GBM studies are performed in formats that fail to recapitulate the most essential component of …


Optimizing The Neural Response To Electrical Stimulation And Exploring New Applications Of Neurostimulation, Kurt Yuqin Qing Apr 2015

Optimizing The Neural Response To Electrical Stimulation And Exploring New Applications Of Neurostimulation, Kurt Yuqin Qing

Open Access Dissertations

Electrical stimulation has been successful in treating patients who suffer from neurologic and neuropsychiatric disorders that are resistant to standard treatments. For deep brain stimulation (DBS), its official approved use has been limited to mainly motor disorders, such as Parkinson's disease and essential tremor. Alcohol use disorder, and addictive disorders in general, is a prevalent condition that is difficult to treat long-term. To determine whether DBS can reduce alcohol drinking in animals, voluntary alcohol consumption of alcohol-preferring rats before, during, and after stimulation of the nucleus accumbens shell were compared. Intake levels in the low stimulus intensity group (n=3, 100&mgr;A …


The Pathological Role Of Acrolein In Experimental Autoimmune Encephalomyelitis And Multiple Sclerosis, Melissa A. Tully Apr 2015

The Pathological Role Of Acrolein In Experimental Autoimmune Encephalomyelitis And Multiple Sclerosis, Melissa A. Tully

Open Access Dissertations

Multiple sclerosis (MS) is an autoimmune demyelinating neuropathy that affects nearly 2.5 million people worldwide. Despite substantial efforts, few treatments are currently available largely due to limited knowledge of pathogenic mechanisms underlying the disease. The immune-inflammatory nature of the pathology has prompted investigation of the role of oxidative stress in disease development and progression; however targeting reactive oxygen species for neutralization has had marginal success therapeutically, suggesting that an alternate oxidative stress-related target would prove beneficial. Recently, our lab has implicated acrolein, a highly reactive aldehyde that is both a byproduct and catalyst of lipid peroxidation, as a potential therapeutic …


A Novel In Vivo Tumor Oxygen Profiling Assay: Combining Functional And Molecular Imaging With Multivariate Mathematical Modeling, Chung-Wein Lee Apr 2015

A Novel In Vivo Tumor Oxygen Profiling Assay: Combining Functional And Molecular Imaging With Multivariate Mathematical Modeling, Chung-Wein Lee

Open Access Dissertations

Purpose: The objective of this study is to develop and test a novel high spatio-temporal in vivo assay to quantify tumor oxygenation and hypoxia. The assay implements a biophysical model of oxygen transport to fuse parameters acquired from in vivo functional and molecular imaging modalities. ^ Introduction: Tumor hypoxia plays an important role in carcinogenesis. It triggers pathological angiogenesis to supply more oxygen to the tumor cells and promotes cancer cell metastasis. Preclinical and clinical evidence show that anti-angiogenic treatment is capable of normalizing the tumor vasculature both structurally and functionally. The resulting normalized vasculature provides a more efficient and …


Acrolein As A Novel Therapeutic Target For Spinal Cord Injury Induced Neuropathic Pain, Jonghyuck Park Oct 2014

Acrolein As A Novel Therapeutic Target For Spinal Cord Injury Induced Neuropathic Pain, Jonghyuck Park

Open Access Dissertations

Despite years of research, post-spinal cord injury (SCI) chronic neuropathic pain remains refractory to treatment and drastically impairs quality of life for SCI victims beyond paralysis. Although inflammation and free radicals contribute to neuropathic pain in SCI, the mechanism is not completely clear. We have recently demonstrated that acrolein, a product and catalyst of lipid peroxidation, induces a vicious cycle of oxidative stress, amplifying its effects and perpetuating oxidative stress and inflammation. In the current study, we have confirmed that acrolein is elevated significantly at least two weeks post-SCI which coincides with the emergence of hyperalgesia (mechanical, cold and thermal). …


Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson Oct 2014

Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson

Open Access Dissertations

The nucleus is a membrane bound organelle and regulation center for gene expression in the cell. Mechanical forces transfer to the nucleus directly and indirectly through specific cellular cytoskeletal structures and pathways. There is increasing evidence that the transferred forces to the nucleus orchestrate gene expression activity. Methods to characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel matrices. Often report only aspect ratio and volume changes, measures that oversimplify the inherent complexity of internal strain patterns. This presents technical challenges to simultaneously observe small scale nuclear mechanics and gene expression levels inside the nuclei of …


Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh Oct 2014

Hierarchical Cell Fluid Extracellular Matrix Interaction In Cell Microenvironment, Soham Ghosh

Open Access Dissertations

Hierarchical structural interactions between components of cell microenvironment, the extracellular matrix (ECM), cytoplasm, nucleus and fluid, are important phenomena that decide cell level physiological process and tissue engineering applications. One of those tissue engineering modalities is freezing of biomaterials, important in a wide variety of biomedical applications including cryopreservation and cryosurgeries. In order to design these applications, freezing-induced changes of the cells and tissues and corresponding biophysical mechanisms need to be well understood. Although the effects of freezing on cells in suspension have been extensively studied, the intracellular mechanics of cells embedded in the extracellular matrix (ECM) during freezing are …


Theory For Diffusional Encounters In Heterogeneous Environments And Multivalent Electrolyte Screening Of Charged Interface, Ran Li Oct 2014

Theory For Diffusional Encounters In Heterogeneous Environments And Multivalent Electrolyte Screening Of Charged Interface, Ran Li

Open Access Dissertations

We develop a theory for encounter rates in a three-dimensional system of connected compartments. The model of connected compartments exhibits the length-scale dependent diffusion that is observed in many heterogeneous environments, such as porous catalysts and biological environments. We discovered a dimensionless number that is the dominant scaling variable and obtained, for the first time, an analytical expression for the encounter rate. The new theory generalizes the classic Smoluchowski diffusion limit to the case of heterogeneous environments. The new theory is tested using Brownian dynamics simulations.^ We also experimentally investigated the behavior of multivalent electrolyte near a charged solid-liquid interface. …


Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park Oct 2014

Structure-Functionality Relationship Of Collagen Scaffolds For Tissue Engineering, Seungman Park

Open Access Dissertations

Tissue engineering is a promising technology that enables scientists to create artificial organs or replace damaged tissues using animal cells and other components. For successful tissue regeneration, many factors should be taken into account, however, three components are most crucial: cell, scaffold, and soluble factor(s). In order to check the functionality after regeneration of desired tissues, various approaches have been attempted, depending on the physical, biological, and chemical properties of the tissues. Recently, the importance of the extracellular matrix (ECM) microstructure is being considered to be important in this regard. The ECM is closely associated with various functional properties of …


Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen Oct 2014

Understanding Preferred Leg Stiffness And Layered Control Strategies For Locomotion, Zhuohua H. Shen

Open Access Dissertations

Despite advancement in the field of robotics, current legged robots still cannot achieve the kind of locomotion stability animals and humans have. In order to develop legged robots with greater stability, we need to better understand general locomotion dynamics and control principles. Here we demonstrate that a mathematical modeling approach could greatly enable the discovery and understanding of general locomotion principles. ^ It is found that animal leg stiffness when scaled by its weight and leg length falls in a narrow region between 7 and 27. Rarely in biology does such a universal preference exist. It is not known completely …