Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

Dartmouth Scholarship

Reproduction

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Variation In Arabidopsis Flowering Time Associated With Cis-Regulatory Variation In Constans, Ulises Rosas, Yu Mei, Qiguang Xie, Joshua A. Banta, Royce W. Zhou, Gabriela Seufferheld, Silvia Gerard, Lucy Chou, Naeha Bhambhra, Jennifer Deane Parks, Jonathan M. Flowers, C. Robertson Mcclung, Yoshie Hanzawa, Michael D. Purugganan Apr 2014

Variation In Arabidopsis Flowering Time Associated With Cis-Regulatory Variation In Constans, Ulises Rosas, Yu Mei, Qiguang Xie, Joshua A. Banta, Royce W. Zhou, Gabriela Seufferheld, Silvia Gerard, Lucy Chou, Naeha Bhambhra, Jennifer Deane Parks, Jonathan M. Flowers, C. Robertson Mcclung, Yoshie Hanzawa, Michael D. Purugganan

Dartmouth Scholarship

The onset of flowering, the change from vegetative to reproductive development, is a major life history transition in flowering plants. Recent work suggests that mutations in cis-regulatory mutations should play critical roles in the evolution of this (as well as other) important adaptive traits, but thus far there has been little evidence that directly links regulatory mutations to evolutionary change at the species level. While several genes have previously been shown to affect natural variation in flowering time in Arabidopsis thaliana, most either show protein-coding changes and/or are found at low frequency (<5%). Here we identify and characterize natural variation in the cis-regulatory sequence in the …


Nectar Secondary Compounds Affect Self-Pollen Transfer: Implications For Female And Male Reproduction, Rebecca E. Irwin, Lynn S. Adler Aug 2008

Nectar Secondary Compounds Affect Self-Pollen Transfer: Implications For Female And Male Reproduction, Rebecca E. Irwin, Lynn S. Adler

Dartmouth Scholarship

Pollen movement within and among plants affects inbreeding, plant fitness, and the spatial scale of genetic differentiation. Although a number of studies have assessed how plant and floral traits influence pollen movement via changes in pollinator behavior, few have explored how nectar chemical composition affects pollen transfer. As many as 55% of plants produce secondary compounds in their nectar, which is surprising given that nectar is typically thought to attract pollinators. We tested the hypothesis that nectar with secondary compounds may benefit plants by encouraging pollinators to leave plants after visiting only a few flowers, thus reducing self-pollen transfer. We …