Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Effects Of Temperature On Crispr/Cas System, Eddie Beckom, Dr. Lori Scott Jan 2019

Effects Of Temperature On Crispr/Cas System, Eddie Beckom, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses a collection of online bioinformatics tools to predict gene function. We investigated the effect of temperature on the complexity of CRISPR/Cas systems in bacterial organisms across temperature classifications. We predict that temperature extremes would result in CRISPR/Cas systems with multiple operons, repeating cas genes, and complex systems. CRISPR/Cas systems can be classified into three types with a number of subtypes based on the CRISPR-associated genes, cas genes, present in a given organism. Our hypothesis is supported by the presence of multiple operons in thermophilic organisms based on …


Predicted Ortholog Pairs Between E. Coli And M. Ruber Are B3456 And Mrub_2379, B3457 And Mrub_2378, B3456 And Mrub_2374, B3455 And Mrub_2376, And B3454 And Mrub2377, Which Each Code For Components Of A Prokaryotic-Type Abc Transporter For Branched-Chain Amino Acids, Elizabeth Paris, Tony Steinle, Dr. Lori Scott Jan 2018

Predicted Ortholog Pairs Between E. Coli And M. Ruber Are B3456 And Mrub_2379, B3457 And Mrub_2378, B3456 And Mrub_2374, B3455 And Mrub_2376, And B3454 And Mrub2377, Which Each Code For Components Of A Prokaryotic-Type Abc Transporter For Branched-Chain Amino Acids, Elizabeth Paris, Tony Steinle, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_2379, Mrub_2378, Mrub_2374, Mrub_2376, and Mrub_2377 (KEGG map number 02010). We predict these genes encode components of a branched-chain amino acid ATP Binding Cassette (ABC) transporter: 1) Mrub_2374 (DNA coordinates 2424832-2425902 on the reverse strand) encodes one permease component (aka transmembrane domain); 2) Mrub_2378 (DNA coordinates 2429525-2430439 on the reverse strand) encodes the second permease component (aka transmembrane domain); 3) Mrub_2376 (DNA coordinates 2427858-2428613 on the reverse strand) encodes one of the ATP-binding domain (aka nucleotide binding domain); 4) Mrub_2377 (DNA coordinates 2428704-2429489 on the reverse strand) …


Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott Jan 2018

Confirmation That Mrub_1751 Is Homologous To E. Coli Xylf, Mrub_1752 Is Homologous To E. Coli Xylh, And Mrub_1753 Is Homologous To E. Coli Xylg, Ben Price, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes Mrub_1751, Mrub_1752 and Mrub_1753 (KEGG map number 02010). We predict these genes encode components of a D-xylose ATP Binding Cassette (ABC) transporter: 1) Mrub_1752 (DNA coordinates 1809004-1810224 on the forward strand) encodes the permease component (aka transmembrane domain), predicted to be an ortholog and 2) Mrub_1753 (DNA coordinates 1810227-1811000 on the forward strand) encodes the ATP-binding domain (aka nucleotide binding domain); and 3) Mrub_1751 (DNA coordinates 1807855-1808892 on the forward strand) encodes the solute binding protein. The ABC-transporter for M. ruber to transport D-xylose is homologous with the transporter …


Bioinformatic Comparison Of Genes In The Leucine Biosynthesis Pathway Of Escherichia Coli To Meiothermus Ruber, Isaac D. Schmied, Benjamin T. Ryan, Dr. Lori Scott Feb 2016

Bioinformatic Comparison Of Genes In The Leucine Biosynthesis Pathway Of Escherichia Coli To Meiothermus Ruber, Isaac D. Schmied, Benjamin T. Ryan, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

We predict that Mrub_1905 and Mrub_1906 encode the enzyme 2-isopropylmalate synthase (Mrub_1906 DNA coordinates complement(1965044..1966603) Mrub_1905 DNA coordinates complement(1963455..1965041)), which is the first step of the leucine biosynthesis pathway (KEGG map number 00290). It catalyzes the conversion of (2S)-2-isopropylmalate to 2-isopropylmaleate. The E. coli K12 MG1655 ortholog is predicted to be b0074, which has the gene identifier leuA. We predict that Mrub_1846 encodes the enzyme 3-isopropylmalate dehydrogenase (DNA coordinates complement(1903909..1904961)), which is the third step of the leucine biosynthesis pathway (KEGG map number 00290). It catalyzes the conversion of (2R,3S)-3-isopropylmalate to (2S)-2-isopropyl-3-oxosuccinate. The E. coli K12 MG1655 ortholog is predicted …


Bioinformatics Indicates That Meiothermus Ruber Genes Mrub_1710 And Mrub_1712 Are Homologs Of The Escherichia Coli Genes B2903 (P-Protein; Glycine Dehydrogenase) And B2905 (T-Protein; Aminomethyltransferase), Respectively, Malory J. Groen, Dr. Lori Scott Feb 2016

Bioinformatics Indicates That Meiothermus Ruber Genes Mrub_1710 And Mrub_1712 Are Homologs Of The Escherichia Coli Genes B2903 (P-Protein; Glycine Dehydrogenase) And B2905 (T-Protein; Aminomethyltransferase), Respectively, Malory J. Groen, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation – Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1710 and Mrub_1712. We predict that Mrub_1710 encodes the enzyme glycine dehydrogenase (DNA coordinates 3046168.. 3049041 on the reverse strand), which is the first step of the glycine degradation pathway (KEGG map number 00260). It catalyzes the conversion of glycine to S-Amino-methyldihydro-lipoylprotein. The E. coli K12 MG1655 ortholog is predicted to be b2903, which has the gene identifier gcvP. …


Environmental Processing In Meiothermus Ruber: The Inorganic Phosphate Abc Transporter, Mich A. Gehrig Jr., Emma M. Segura-Fernandez, Dr. Lori Scott May 2015

Environmental Processing In Meiothermus Ruber: The Inorganic Phosphate Abc Transporter, Mich A. Gehrig Jr., Emma M. Segura-Fernandez, Dr. Lori Scott

Biology: Student Scholarship & Creative Works

Bioinformatics analysis of M. ruber