Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Life Sciences

Changes In Feeding Selectivity Of Freshwater Invertebrates Across A Natural Thermal Gradient, Timothy A C Gordon, Joana Neto-Cerejeira, Paula C. Furey, Eoin J. O’Gorman Jan 2018

Changes In Feeding Selectivity Of Freshwater Invertebrates Across A Natural Thermal Gradient, Timothy A C Gordon, Joana Neto-Cerejeira, Paula C. Furey, Eoin J. O’Gorman

Paula Furey

No abstract provided.


Microclimate Moderates Plant Responses To Macroclimate Warming, Pieter De Frenne, Francisco Rodríguez-Sánchez, David Anthony Coomes, Lander Baeten, Gorik Verstraeten, Mark Vellend, Markus Bernhardt-Römermann, Carissa D. Brownd, Jörg Brunet, Johnny Cornelis, Guillaume M. Decocq, Hartmut Dierschke, Ove Eriksson, Frank S. Gilliam, Radim Hédl, Thilo Heinken, Martin Hermy, Patrick Hommel, Michael A. Jenkins, Daniel L. Kelly, Keith J. Kirby, Fraser J. G. Mitchell, Tobias Naaf, Miles Newman, George Peterken, Petr Petrík, Jan Schultz, Grégory Sonnier, Hans Van Calster, Donald M. Waller, Gian-Reto Walther, Peter S. White, Kerry D. Woods, Monika Wulf, Bente Jessen Graae, Kris Verheyen Apr 2016

Microclimate Moderates Plant Responses To Macroclimate Warming, Pieter De Frenne, Francisco Rodríguez-Sánchez, David Anthony Coomes, Lander Baeten, Gorik Verstraeten, Mark Vellend, Markus Bernhardt-Römermann, Carissa D. Brownd, Jörg Brunet, Johnny Cornelis, Guillaume M. Decocq, Hartmut Dierschke, Ove Eriksson, Frank S. Gilliam, Radim Hédl, Thilo Heinken, Martin Hermy, Patrick Hommel, Michael A. Jenkins, Daniel L. Kelly, Keith J. Kirby, Fraser J. G. Mitchell, Tobias Naaf, Miles Newman, George Peterken, Petr Petrík, Jan Schultz, Grégory Sonnier, Hans Van Calster, Donald M. Waller, Gian-Reto Walther, Peter S. White, Kerry D. Woods, Monika Wulf, Bente Jessen Graae, Kris Verheyen

Frank S. Gilliam

Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of …


Microclimate Moderates Plant Responses To Macroclimate Warming, Pieter De Frenne, Francisco Rodríguez-Sánchez, David Anthony Coomes, Lander Baeten, Gorik Verstraeten, Mark Vellend, Markus Bernhardt-Römermann, Carissa D. Brownd, Jörg Brunet, Johnny Cornelis, Guillaume M. Decocq, Hartmut Dierschke, Ove Eriksson, Frank S. Gilliam, Radim Hédl, Thilo Heinken, Martin Hermy, Patrick Hommel, Michael A. Jenkins, Daniel L. Kelly, Keith J. Kirby, Fraser J. G. Mitchell, Tobias Naaf, Miles Newman, George Peterken, Petr Petrík, Jan Schultz, Grégory Sonnier, Hans Van Calster, Donald M. Waller, Gian-Reto Walther, Peter S. White, Kerry D. Woods, Monika Wulf, Bente Jessen Graae, Kris Verheyen Apr 2016

Microclimate Moderates Plant Responses To Macroclimate Warming, Pieter De Frenne, Francisco Rodríguez-Sánchez, David Anthony Coomes, Lander Baeten, Gorik Verstraeten, Mark Vellend, Markus Bernhardt-Römermann, Carissa D. Brownd, Jörg Brunet, Johnny Cornelis, Guillaume M. Decocq, Hartmut Dierschke, Ove Eriksson, Frank S. Gilliam, Radim Hédl, Thilo Heinken, Martin Hermy, Patrick Hommel, Michael A. Jenkins, Daniel L. Kelly, Keith J. Kirby, Fraser J. G. Mitchell, Tobias Naaf, Miles Newman, George Peterken, Petr Petrík, Jan Schultz, Grégory Sonnier, Hans Van Calster, Donald M. Waller, Gian-Reto Walther, Peter S. White, Kerry D. Woods, Monika Wulf, Bente Jessen Graae, Kris Verheyen

Frank S. Gilliam

Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., “thermophilization” of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that “climatic lags” may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of …


Flowering Phenology Change And Climate Warming In Southwestern Ohio, Ryan Mcewan, Robert J. Brecha, Donald R. Geiger, Grace P. John Feb 2015

Flowering Phenology Change And Climate Warming In Southwestern Ohio, Ryan Mcewan, Robert J. Brecha, Donald R. Geiger, Grace P. John

Robert J. Brecha

Global surface temperature has increased markedly over the last 100 years. This increase has a variety of implications for human societies, and for ecological systems. One of the most obvious ways ecosystems are affected by global climate change is through alteration of organisms’ developmental timing (phenology). We used annual botanical surveys that documented the first flowering for an array of species from 1976 to 2003 to examine the potential implications of climate change for plant development. The overall trend for these species was a progressively earlier flowering time. The two earliest flowering taxa (Galanthus and Crocus) also exhibited the strongest …


Flowering Phenology Change And Climate Warming In Southwestern Ohio, Ryan Mcewan, Robert J. Brecha, Donald R. Geiger, Grace P. John Feb 2015

Flowering Phenology Change And Climate Warming In Southwestern Ohio, Ryan Mcewan, Robert J. Brecha, Donald R. Geiger, Grace P. John

Ryan McEwan

Global surface temperature has increased markedly over the last 100 years. This increase has a variety of implications for human societies, and for ecological systems. One of the most obvious ways ecosystems are affected by global climate change is through alteration of organisms’ developmental timing (phenology). We used annual botanical surveys that documented the first flowering for an array of species from 1976 to 2003 to examine the potential implications of climate change for plant development. The overall trend for these species was a progressively earlier flowering time. The two earliest flowering taxa (Galanthus and Crocus) also exhibited the strongest …


Flowering Phenology Change And Climate Warming In Southwestern Ohio, Ryan Mcewan, Robert J. Brecha, Donald R. Geiger, Grace P. John Jan 2015

Flowering Phenology Change And Climate Warming In Southwestern Ohio, Ryan Mcewan, Robert J. Brecha, Donald R. Geiger, Grace P. John

Donald R. Geiger

Global surface temperature has increased markedly over the last 100 years. This increase has a variety of implications for human societies, and for ecological systems. One of the most obvious ways ecosystems are affected by global climate change is through alteration of organisms’ developmental timing (phenology). We used annual botanical surveys that documented the first flowering for an array of species from 1976 to 2003 to examine the potential implications of climate change for plant development. The overall trend for these species was a progressively earlier flowering time. The two earliest flowering taxa (Galanthus and Crocus) also exhibited the strongest …


Bears, Birds, Bugs And Climate: Environews #^, Richard Philp Mar 2013

Bears, Birds, Bugs And Climate: Environews #^, Richard Philp

Richard B. Philp

There has long been a concern that global warming would cause species movements reflective of the instinctive drive to seek the most favorable environmental conditions. One concern is that agricultural pests and carriers of diseases like malaria would move north and south from tropical and subtropical areas. Some changes may benefit the species but not necessarily humankind. Both predicted and observed changes are discussed with examples from plant and animal species. Some concerns are controversial, kike the effect of climate change on polar bears.


Recent Advances In The Climate Change Biology Literature: Describing The Whole Elephant, A. Townsend Peterson, Shaily Menon, Xingong Li Aug 2010

Recent Advances In The Climate Change Biology Literature: Describing The Whole Elephant, A. Townsend Peterson, Shaily Menon, Xingong Li

Shaily Menon

Climate change biology is seeing a wave of new contributions, which are reviewed herein. Contributions treat shifts in phenology and distribution, and both document past and forecast future effects. However, many of the current wave of contributions are observational and correlational, and few are experimental in nature, and too often a conceptual framework in which to contextualize the results is lacking. An additional gap is the lack of effective cross-linking among areas of research, for example, connection of sea-level rise and climate change implications for distributions of species, or evolutionary adaptation studies with distributional shift studies. Although numerous important contributions …