Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Par-4: An Attractive Target For Cancer Therapy, Krishna K. Raut, Antoine Baudin, David S. Libich, Lijun Liu, Scott Lovell, Steven M. Pascal Jan 2023

Par-4: An Attractive Target For Cancer Therapy, Krishna K. Raut, Antoine Baudin, David S. Libich, Lijun Liu, Scott Lovell, Steven M. Pascal

College of Sciences Posters

Lack of early diagnosis, cancer recurrence, metastasis, and adverse side effects are some of the major problems in the treatment of cancers. Par-4, a tumor suppressor protein, is an attractive target for cancer therapy as it selectively kills cancer cells. Cl-Par-4 is the active fragment of Par-4 that enters the nucleus and selectively induces apoptosis in cancer cells. It has also been reported that Par-4 increases the susceptibility of cancer cells to chemotherapy and reverses cancer recurrence. Further, Par-4 has been shown to play a dual role: inhibition of EMT (Epithelial-mesenchymal transition) as well as assistance in the reverse process, …


A Pathway To Solving The Structure Of Cl-Par-4 Tumor Suppressor Protein: Challenges & Findings, Krishna Raut, Samjhana Pandey, Andrea M. Clark, Komala Ponniah, Steven M. Pascal Apr 2022

A Pathway To Solving The Structure Of Cl-Par-4 Tumor Suppressor Protein: Challenges & Findings, Krishna Raut, Samjhana Pandey, Andrea M. Clark, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. Down-regulation of this protein has been reported in a myriad of cancers. Conversely, up-regulation of Par-4 is found to be associated with several neurodegenerative disorders. Par-4 is unique in the sense it can selectively induce apoptosis in cancer cells. For this, caspase-dependent intracellular cleavage of Par-4 is essential to produce the functionally active fragment, cl-Par-4 (caspase-cleaved Par-4). The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells.

Our laboratory is interested in determining the structure of cl-Par-4 and understanding it’s interaction with various …


Investigation Of Magnesium Cation-Proton Exchange With Transmembrane Electrostatically Localized Protons (Telp) At A Liquid-Membrane Interface: Fundamental To Bioenergetics, Gyanendra Kharel, Andrew J. Evans, Christopher M. Russo, Michael Eason, James W. Lee Apr 2022

Investigation Of Magnesium Cation-Proton Exchange With Transmembrane Electrostatically Localized Protons (Telp) At A Liquid-Membrane Interface: Fundamental To Bioenergetics, Gyanendra Kharel, Andrew J. Evans, Christopher M. Russo, Michael Eason, James W. Lee

College of Sciences Posters

The Lee transmembrane electrostatic proton localization (TELP) theory is a revolutionary scientific theory that has successfully explained decades long-standing quandary in the field of bioenergetics in regards to ATP synthesis in biological systems, specifically alkalophilic bacteria. This study provides experimental support for the TELP theory by further demonstrating evidence of a localized proton layer existing at the liquid-membrane interface in a simulated biological membrane apparatus. Whilst monovalent cations have been studied extensively, divalent cation exchange has not been studied experimentally.

A previous study determined equilibrium constant for Na+ and K+ to exchange with localized H+ layer to …


Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Apr 2021

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. We have shown that this 38 kDa full-length Par-4 (Fl-Par-4) protein is predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate a 24 kDa functionally active cleaved Par-4 (cl-Par-4) fragment. The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells. Our laboratory is interested in how the disorder-order balance within Fl-Par-4 and cl-Par-4 may be related to the balance between cell survival and cell death. Currently, we are using biophysical techniques such as circular …