Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

External Link

Protein Structure, Tertiary

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder Sep 2015

Allosteric Inhibition Of A Stem Cell Rna-Binding Protein By An Intermediary Metabolite, Carina Clingman, Laura Deveau, Samantha Hay, Ryan Genga, Shivender Shandilya, Francesca Massi, Sean Ryder

Sean P. Ryder

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon omega-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA …


A Computational Analysis Of The Structural Determinants Of Apobec3'S Catalytic Activity And Vulnerability To Hiv-1 Vif, Shivender Shandilya, Markus-Frederik Bohn, Celia Schiffer Jun 2015

A Computational Analysis Of The Structural Determinants Of Apobec3'S Catalytic Activity And Vulnerability To Hiv-1 Vif, Shivender Shandilya, Markus-Frederik Bohn, Celia Schiffer

Celia A. Schiffer

APOBEC3s (A3) are Zn(2+) dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively …


Characterization Of The Monomer-Dimer Equilibrium Of Recombinant Histo-Aspartic Protease From Plasmodium Falciparum, Huogen Xiao, Lee-Ann Briere, Stanley Dunn, Rickey Yada Oct 2012

Characterization Of The Monomer-Dimer Equilibrium Of Recombinant Histo-Aspartic Protease From Plasmodium Falciparum, Huogen Xiao, Lee-Ann Briere, Stanley Dunn, Rickey Yada

Stanley D Dunn

Histo-aspartic protease (HAP) from Plasmodium falciparum is an intriguing aspartic protease due to its unique structure. Our previous study reported the first recombinant expression of soluble HAP, in its truncated form (lys77p-Leu328) (p denotes prosegment), as a thioredoxin (Trx) fusion protein Trx-tHAP. The present study found that the recombinant Trx-tHAP fusion protein aggregated during purification which could be prevented through the addition of 0.2% CHAPS. Trx-tHAP fusion protein was processed into a mature form of tHAP (mtHAP) by both autoactivation, and activation with either enterokinase or plasmepsin II. Using gel filtration chromatography as well as sedimentation velocity and equilibrium ultracentrifugation, …


The B Subunits In The Peripheral Stalk Of F1f0 Atp Synthase Preferentially Adopt An Offset Relationship, Shane Claggett, Mac O'Neil Plancher, Stanley Dunn, Brian Cain Oct 2012

The B Subunits In The Peripheral Stalk Of F1f0 Atp Synthase Preferentially Adopt An Offset Relationship, Shane Claggett, Mac O'Neil Plancher, Stanley Dunn, Brian Cain

Stanley D Dunn

The peripheral stalk of F1F0 ATP synthase is essential for the binding of F1 to FO and for proper transfer of energy between the two sectors of the enzyme. The peripheral stalk of Escherichia coli is composed of a dimer of identical b subunits. In contrast, photosynthetic organisms express two b-like genes that form a heterodimeric peripheral stalk. Previously we generated chimeric peripheral stalks in which a portion of the tether and dimerization domains of the E. coli b subunits were replaced with homologous sequences from the b and b' subunits of Thermosynechococcus elongatus (Claggett, S. B., Grabar, T. B., …