Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Mechanisms Of Cross-Presentation By Cdc1s, Derek James Theisen Aug 2020

Mechanisms Of Cross-Presentation By Cdc1s, Derek James Theisen

Arts & Sciences Electronic Theses and Dissertations

Classical dendritic cells (cDCs) are specialized antigen presenting cells that can be divided into distinct subsets based on the types of pathogens they respond to and the type of immune response they generate. The cDC1 subset is specialized in priming CD8 T cell responses through the process of cross-presentation. During cross-presentation, exogenous protein antigens are taken up by cDC1 and presented on MHCI molecules, allowing for the priming of CD8 T cells during conditions when DCs themselves are not directly infected. The ability to cross-present in vivo is unique to cDC1, and is essential for anti-viral responses and rejection of …


Identification Of A Novel Single Amino Acid Substitution (V666g) Of Jak1 From A Patient With Acute Lymphoblastic Leukemia Impairs Jak3 Mediated Il-2 Signaling, Alice Hernandez Grant Jan 2020

Identification Of A Novel Single Amino Acid Substitution (V666g) Of Jak1 From A Patient With Acute Lymphoblastic Leukemia Impairs Jak3 Mediated Il-2 Signaling, Alice Hernandez Grant

Open Access Theses & Dissertations

The Janus kinase (JAK) family, notably JAK1, JAK2 and JAK3 are recognized as oncogenic drivers in high risk Acute Lymphoblastic Leukemia (ALL). The bulk of activating JAK mutations are thought to occur within functional hot-spots across Janus Homology (JH) domains. The most frequently mutated regions is the JH2 pseudo-kinase, which provides a negative regulatory role to the adjacent catalytically active JH1 kinase domain. Despite the prevalence of JAK activating mutations and a need for new therapeutic inhibitors, there is a lack of understanding in the allosteric regulation of JAK kinases. Here we sought to identify mutations involved in driving ALL …