Open Access. Powered by Scholars. Published by Universities.®

Operations Research, Systems Engineering and Industrial Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Operations Research, Systems Engineering and Industrial Engineering

Predicting Solar Irradiance Using Time Series Neural Networks, Ahmad Alzahrani, Jonathan W. Kimball, Cihan H. Dagli Nov 2014

Predicting Solar Irradiance Using Time Series Neural Networks, Ahmad Alzahrani, Jonathan W. Kimball, Cihan H. Dagli

Electrical and Computer Engineering Faculty Research & Creative Works

Increasing the accuracy of prediction improves the performance of photovoltaic systems and alleviates the effects of intermittence on the systems stability. A Nonlinear Autoregressive Network with Exogenous Inputs (NARX) approach was applied to the Vichy-Rolla National Airport's photovoltaic station. The proposed model uses several inputs (e.g. time, day of the year, sky cover, pressure, and wind speed) to predict hourly solar irradiance. Data obtained from the National Solar Radiation Database (NSRDB) was used to conduct simulation experiments. These simulations validate the use of the proposed model for short-term predictions. Results show that the NARX neural network notably outperformed the other …


Position/Speed Sensorless Control For Permanent-Magnet Synchronous Machines, Yue Zhao Apr 2014

Position/Speed Sensorless Control For Permanent-Magnet Synchronous Machines, Yue Zhao

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Permanent-magnet synchronous machines (PMSMs) are widely used in industrial applications owing to their distinctive advantages, such as high efficiency, high power density, and wide constant power region. To achieve high-performance field oriented control, accurate rotor position information, which is usually measured by rotary encoders or resolvers, is indispensable. However, the use of these sensors increases the cost, size, weight, and wiring complexity and reduces the mechanical robustness and the reliability of the overall PMSM drive systems. The goal of the research for this dissertation was to develop a rotor position/speed sensorless control system with performance comparable to the sensor-based control …


Detection Systems For Airbag Deployment, Ryan S. Kee Mar 2014

Detection Systems For Airbag Deployment, Ryan S. Kee

Honors Program Projects

The airbag enablement system in today’s automobiles is not ideal and may allow airbags to deploy when they should not. Weight sensors detect pressure when someone sits in a passenger seat, enabling the airbag to deploy if an accident occurs. This system is flawed. For example, if a heavy box is placed in a passenger seat, the airbag will be unnecessarily enabled. The goal of this research project was to determine if different sensors—not weight sensors or cameras—could be used to identify the occupant of an automobile seat.

Using a microchip programmed in C language, a circuit was designed with …


Introduction To Special Issue Of Journal Of Defense Modeling And Simulation: Novel Approaches To Defense And Military Modeling And Simulation, Scott D. Snyder, James M. Taylor Jr Jan 2014

Introduction To Special Issue Of Journal Of Defense Modeling And Simulation: Novel Approaches To Defense And Military Modeling And Simulation, Scott D. Snyder, James M. Taylor Jr

Peter Kiewit Institute: Faculty Publications

Developing solutions to complex problems in government and industry is a daunting task that often requires tremendous investment in time and resources to solve. Modeling and simulation (M&S) has incredible potential to streamline development and cut costs by conducting virtual experiments that give insight into performance under various test conditions. As many program managers in the federal acquisition process can attest, realistic testing of live equipment in an operational environment can be some of the most expensive parts of a development program. M&S can provide insight into mission success of yetto- bedesigned systems without the need to actually build and …


Simple Multi-Attribute Rating Technique For Renewable Energy Deployment Decisions (Smart Redd), James M. Taylor Jr, Betty Love Jan 2014

Simple Multi-Attribute Rating Technique For Renewable Energy Deployment Decisions (Smart Redd), James M. Taylor Jr, Betty Love

Peter Kiewit Institute: Faculty Publications

In the effort to provide electrical power service and the sustaining fuel required to run generators at forward-deployed bases in Afghanistan and Iraq over more than 10 years, the US military spent billions of dollars and a paid a heavy toll in terms of human casualties. The green energy linear program for optimizing deployments (GELPOD) proof-of-concept model showed that a linear program could be used to optimize combat deployment of energy generation systems to minimize cost and casualties. Results indicated that reduction in both cost and casualties for renewable energy sources was highly dependent on fuel cost and deployment length. …