Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit Dec 2023

Enhancing Wettability Prediction In The Presence Of Organics For Hydrogen Geo-Storage Through Data-Driven Machine Learning Modeling Of Rock/H2/Brine Systems, Zeeshan Tariq, Muhammad Ali, Nurudeen Yekeen, Auby Baban, Bicheng Yan, Shuyu Sun, Hussein Hoteit

Research outputs 2022 to 2026

The success of geological H2 storage relies significantly on rock–H2–brine interactions and wettability. Experimentally assessing the H2 wettability of storage/caprocks as a function of thermos-physical conditions is arduous because of high H2 reactivity and embrittlement damages. Data-driven machine learning (ML) modeling predictions of rock–H2–brine wettability are less strenuous and more precise. They can be conducted at geo-storage conditions that are impossible or hazardous to attain in the laboratory. Thus, ML models were utilized in this research to accurately model the wettability behavior of a ternary system consisting of H2, rock minerals (quartz and mica), and brine at different operating geological …


A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz Mar 2023

A Review Of Hydrogen/Rock/Brine Interaction: Implications For Hydrogen Geo-Storage, Masoud Aslannezhad, Muhammad Ali, Azim Kalantariasl, Mohammad Sayyafzadeh, Zhenjiang You, Stefan Iglauer, Alireza Keshavarz

Research outputs 2022 to 2026

Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless, one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2, which is unsafe on the surface because H2 is highly compressible, volatile, and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines …


Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu Jan 2023

Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu

Research outputs 2022 to 2026

Enhanced oil production can maximise yield from depleted reservoirs, and in the face of dwindling global oil reserves can reduce the need for exploratory drilling during the transition away from fossil fuels. A hybrid technique, merging a magnetic field (MF) and magnesium oxide (MgO) nanoparticles (NPs), was investigated as a potential method of enhancing oil production from oil-wet carbonate reservoirs. The impact of this hybrid technique on rock wettability, zeta potential, and interfacial tension was also investigated. Displacement experiments were carried out on oil-wet Austin chalk – a laboratory carbonate rock analogue – using MgO NPs in deionized water (DW) …


Experimental Investigation Of The Interface And Wetting Characteristics Of Rock-H2-Brine Systems For H2 Geological Storage, Mirhasan Hosseini Jan 2023

Experimental Investigation Of The Interface And Wetting Characteristics Of Rock-H2-Brine Systems For H2 Geological Storage, Mirhasan Hosseini

Theses: Doctorates and Masters

The projected rise in demand for hydrogen (H2) production is a response to several factors, including greenhouse gas emissions caused by burning fossil fuels, depletion of fossil fuel reserves, and their uneven distribution around the earth. Thus, increased requirement for large-scale hydrogen storage solutions is anticipated to overcome imbalance between energy demand and supply. Deep underground formations such as salt caverns and porous reservoir rocks (e.g., depleted hydrocarbon reservoirs and deep saline aquifers) are necessary to achieve such volumes in practice. This process is known as underground hydrogen storage (UHS) which is technically very similar to underground natural gas storage. …


Live Imaging Of Micro And Macro Wettability Variations Of Carbonate Oil Reservoirs For Enhanced Oil Recovery And Co/ Trapping/Storage, Anastasia Ivanova, A. Orekhov, S. Markovic, Stefan Iglauer, P. Grishin, A. Cheremisin Dec 2022

Live Imaging Of Micro And Macro Wettability Variations Of Carbonate Oil Reservoirs For Enhanced Oil Recovery And Co/ Trapping/Storage, Anastasia Ivanova, A. Orekhov, S. Markovic, Stefan Iglauer, P. Grishin, A. Cheremisin

Research outputs 2022 to 2026

Carbonate hydrocarbon reservoirs are considered as potential candidates for chemically enhanced oil recovery and for CO² geological storage. However, investigation of one main controlling parameter—wettability—is usually performed by conventional integral methods at the core-scale. Moreover, literature reports show that wettability distribution may vary at the micro-scale due to the chemical heterogeneity of the reservoir and residing fluids. These differences may profoundly affect the derivation of other reservoir parameters such as relative permeability and capillary pressure, thus rendering subsequent simulations inaccurate. Here we developed an innovative approach by comparing the wettability distribution on carbonates at micro and macro-scale by combining live-imaging …


Effects Of Wettability, Lithology, And Permeability On The Optimum Slug Size Of Low Salinity Water Flooding In Carbonates: An Experimental Approach, Hala Khaled Hasan Alshadafan Jun 2022

Effects Of Wettability, Lithology, And Permeability On The Optimum Slug Size Of Low Salinity Water Flooding In Carbonates: An Experimental Approach, Hala Khaled Hasan Alshadafan

Theses

Low salinity water flooding has attracted academic and industry communities due to its relatively simple and applicable technology. One of the drawbacks of applying the IOR/EOR technique is the lack of the availability of low salinity water in large quantities at the reasonable cost required for a technically and environmentally successful project. To overcome this problem, the industry proposed to use produced water/sea water after dilution, and reverse osmosis filter technology to achieve the required salinity. Both techniques are quite costly and might hinder the project's economic success. Low salinity water as slug size followed by high salinity water was …


Contact Angles Of A Brine On A Bituminous Coal In Compressed Hydrogen, Rossen Sedev, Hamed Akhondzadeh, Mujahid Ali, Alireza Keshavarz, Stefan Iglauer Apr 2022

Contact Angles Of A Brine On A Bituminous Coal In Compressed Hydrogen, Rossen Sedev, Hamed Akhondzadeh, Mujahid Ali, Alireza Keshavarz, Stefan Iglauer

Research outputs 2022 to 2026

Hydrogen storage is a main issue in the establishment of a hydrogen economy. Geo-storage could be a viable solution if hydrogen could be injected into and withdrawn from suitable geological formations, reversibly and reliably. Rock wettability is a major factor as it affects injectivities, withdrawal rates, storage capacities, and containment security. We report here the contact angles of a brine on the surface of a bituminous coal in a pressurized hydrogen atmosphere. Under realistic geo-storage conditions the coal surface was weakly water-wet. Hydrogen pressure increased brine contact angles at 25°C but did not have an impact at 50 or 70°C. …


Assessment Of Wettability And Rock-Fluid Interfacial Tension Of Caprock: Implications For Hydrogen And Carbon Dioxide Geo-Storage, Muhammad Ali, Bin Pan, Nurudeen Yekeen, Sarmad Al-Anssari, Amer Al-Anazi, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit Apr 2022

Assessment Of Wettability And Rock-Fluid Interfacial Tension Of Caprock: Implications For Hydrogen And Carbon Dioxide Geo-Storage, Muhammad Ali, Bin Pan, Nurudeen Yekeen, Sarmad Al-Anssari, Amer Al-Anazi, Alireza Keshavarz, Stefan Iglauer, Hussein Hoteit

Research outputs 2022 to 2026

Underground hydrogen (H2) storage (UHS) and carbon dioxide (CO2) geo-storage (CGS) are prominent methods of meeting global energy needs and enabling a low-carbon global economy. The pore-scale distribution, reservoir-scale storage capacity, and containment security of H2 and CO2 are significantly influenced by interfacial properties, including the equilibrium contact angle (θE) and solid-liquid and solid-gas interfacial tensions (γSL and γSG). However, due to the technical constraints of experimentally determining these parameters, they are often calculated based on advancing and receding contact angle values. There is a scarcity of θE, γSL, and γSG data, particularly related to the hydrogen structural sealing potential …


Optimum Geological Storage Depths For Structural H2 Geo-Storage, Stefan Iglauer Jan 2022

Optimum Geological Storage Depths For Structural H2 Geo-Storage, Stefan Iglauer

Research outputs 2022 to 2026

H2 geo-storage has been suggested as a key technology with which large quantities of H2 can be stored and withdrawn again rapidly. One option which is currently explored is H2 storage in sedimentary geologic formations which are geographically widespread and potentially provide large storage space. The mechanism which keeps the buoyant H2 in the subsurface is structural trapping where a caprock prevents the H2 from rising by capillary forces. It is therefore important to assess how much H2 can be stored via structural trapping under given geo-thermal conditions. This structural trapping capacity is thus …


Co2-Wettability Reversal Of Cap-Rock By Alumina Nanofluid: Implications For Co2 Geo-Storage, Muhammad Ali, Adnan Aftab, Faisal Ur Rahman Awan, Hamed Akhondzadeh, Alireza Keshavarz, Ali Saeedi, Stefan Iglauer, Mohammad Sarmadivaleh Apr 2021

Co2-Wettability Reversal Of Cap-Rock By Alumina Nanofluid: Implications For Co2 Geo-Storage, Muhammad Ali, Adnan Aftab, Faisal Ur Rahman Awan, Hamed Akhondzadeh, Alireza Keshavarz, Ali Saeedi, Stefan Iglauer, Mohammad Sarmadivaleh

Research outputs 2014 to 2021

© 2021 Elsevier B.V. The usage of nanofluids is vast in different applications of nano-energy. These minute nanoparticles can be used to alter the hydrophobicity into hydrophilicity for CO2-brine-mineral systems in the presence of organic acids. Nonetheless, the literature lacks the information for the behavior of nanoparticles and its associated concentrations in the presence of organic acids at the reservoir (high temperature and high pressure) conditions. In this study, we have investigated that how different alkyl chain organic acids impact the wettability of mica muscovite for different ageing times (7 days and one year) and how this impact can be …


Effect Of Humic Acid On Co2-Wettability In Sandstone Formation, Mujahid Ali, Faisal Ur Rahman Awan, Muhammad Ali, Ahmed Al-Yaseri, Muhammad Arif, Mónica Sánchez-Román, Alireza Keshavarz, Stefan Iglauer Apr 2021

Effect Of Humic Acid On Co2-Wettability In Sandstone Formation, Mujahid Ali, Faisal Ur Rahman Awan, Muhammad Ali, Ahmed Al-Yaseri, Muhammad Arif, Mónica Sánchez-Román, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

© 2020 Elsevier Inc. Hypothesis: Millions of tons of CO2 are stored in CO2 geological storage (CGS) formations (depleted oil reservoirs and deep saline aquifers) every year. These CGS formations naturally contain small concentrations of water-soluble organic components in particular humic acid (HA), which may drastically affect the rock wettability - a significant factor determining storage capacities and containment security. Hence, it is essential to characterise the effect of humic acid concentration on CO2-wettability and its associated impact on storage capacity. Experimental: To achieve this, we measured advancing and receding contact angles at reservoir conditions using the pendant drop tilted …


Influence Of Bulk And Surface Interactions From Thick, Porous, Soil-Based Substrates On The Spreading Behavior Of Different Viscosity Oils, Firoz Ahmed, Brenda Hutton-Prager Apr 2021

Influence Of Bulk And Surface Interactions From Thick, Porous, Soil-Based Substrates On The Spreading Behavior Of Different Viscosity Oils, Firoz Ahmed, Brenda Hutton-Prager

Faculty and Student Publications

Crude oils and motor oils are commonly identified in oil spills on land. Controlling and understanding their flow both across and into land is of paramount importance to minimize spread and subsequent damage to the ecosystem. Spreading kinetics and surface energy studies were conducted with these oils over several realistic soil-based matrixes, consisting of topsoil (silt-dominant), sand, clay, and moisture. Spreading area through a 1.3 cm deep matrix was reduced with increased moisture content, densely packed matrixes, and higher viscosity oils. Initial contact angle (CA) measurements for all oils was typically lower on clay matrixes due to its sheet-like structure …


A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare Mar 2021

A Systematic Multiscale Investigation Of Nanoparticle-Assisted Co2 Enhanced Oil Recovery (Eor) Process For Shale Oil Reservoirs, Dayo A. Afekare

LSU Doctoral Dissertations

Shale oil reservoirs are prolific on the short term due to hydraulic fracturing and horizontal drilling but experience significant production decline, leading to poor ultimate recovery and leaving billions of barrels of oil buried in the ground. In this study, a systematic multi-scale investigation of an enhanced oil recovery (EOR) process using relatively inexpensive silicon dioxide nanoparticles and carbon dioxide for shale oil reservoirs was conducted. Using the Tuscaloosa Marine Shale (TMS) as a case study, aqueous dispersions of nanosilica in conjunction with CO2 were investigated at nano-to-core scales. At the nanoscale, atomic force microscope was used to investigate …


Surface And Interfacial Phenomena Between Soil And Oil, Md Firoz Ahmed Jan 2021

Surface And Interfacial Phenomena Between Soil And Oil, Md Firoz Ahmed

Electronic Theses and Dissertations

Crude oil and motor oil spills on land have severe environmental consequences that pose threats to both humans and natural resources. It is particularly important to know the flow behavior of oils to protect terrestrial ecosystems from this kind of damage. The spreading kinetics, contact angle (CA), and droplet baseline studies of crude oil and motor oils were investigated over several realistic soil-based matrices composed of topsoil (silt-dominant), sand, clay, and moisture. It was found that with an increase in moisture content (MC), the spreading area decreased, and initial spreading time increased for all given oil. The initial CA generally …


Testing The Effectiveness Of Various Fabrics For Use In Protective Face Coverings, Isaac Daley Jan 2021

Testing The Effectiveness Of Various Fabrics For Use In Protective Face Coverings, Isaac Daley

Williams Honors College, Honors Research Projects

Facemask requirements have been heavily implemented as a result of the COVID-19 pandemic. The purpose of this study was to test various fabrics that could be used in face coverings and determine which materials are best for reducing virus transmission rates. Of the seven fabrics tested, five were conventional home-use fabrics and the other two were surfaces modified with hydrophobic organosilanes. Wettability and droplet adherence tests were performed on each material. The materials that performed the best were decyltrichlorosilane (DTS) modified cotton, perfluorotrichlorosilane (FTS) modified cotton, and polyester. Contact angles for water droplets on these fabrics were 106°, 93°, and …


Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer Jan 2021

Shale Adhesion Force Measurements Via Atomic Force Microscopy, Nikolai Mitiurev, Michael Verrall, Svetlana Shilobreeva, Alireza Keshavarz, Stefan Iglauer

Research outputs 2014 to 2021

Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy …


Preformed Partial Gel Injection Chased By Low-Salinity Waterflooding In Fractured Carbonate Cores, Ali K. Alhuraishawy, Baojun Bai, Mingzhen Wei, Abdullah Almansour Feb 2019

Preformed Partial Gel Injection Chased By Low-Salinity Waterflooding In Fractured Carbonate Cores, Ali K. Alhuraishawy, Baojun Bai, Mingzhen Wei, Abdullah Almansour

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Fractures and oil-wet conditions significantly limit oil recovery in carbonate reservoirs. Gel treatment has been applied in injector wells to modify the prevailing reservoir streamlines and significantly reduce fracture permeability, whereas low-salinity waterflooding has been applied experimentally to modify rock wettability toward water-wet for improved oil recovery. However, both processes have limitations that cannot be resolved using a single method. The objective of this study was to test whether low-salinity water could enable gel particles to move deeply into fractures to efficiently increase oil recovery and control water production. A semitransparent fracture model of carbonate cores and acrylic plates was …


An Experimental Study Of Fractional Wettability Effects On Gas Assisted Gravity Drainage (Gagd), Abdullah Abdulrahman A. Al-Tameemi Jan 2019

An Experimental Study Of Fractional Wettability Effects On Gas Assisted Gravity Drainage (Gagd), Abdullah Abdulrahman A. Al-Tameemi

LSU Master's Theses

Utilizing the power of nature to solve engineering problems has been a time-honored tradition, for example, using the sunlight as a heat and light source. From this principle, the visionary idea of Gas Assisted Gravity Drainage (GAGD) came. The GAGD process utilizes the natural segregation phenomenon of fluids with different densities in order to produce oil efficiently and economically. Waterflooding processes typically do not recover more than 40% of the original oil in place (OOIP), leaving a vast amount of oil behind. A practical and well-planned enhanced oil recovery (EOR) method is needed. However, to plan a successful project, the …


Capillary Forces In Partially Saturated Thin Fibrous Media, Ali Moghadam Jan 2019

Capillary Forces In Partially Saturated Thin Fibrous Media, Ali Moghadam

Theses and Dissertations

Capillarity is often exploited in self-cleaning, drag reducing and fluid absorption/storage (sanitary products) purposes just to name a few. Formulating the underlying physics of capillarity helps future design and development of optimized structures. This work reports on developing computational models to quantify the capillary pressure and capillary forces on the fibrous surfaces. To this end, the current study utilizes a novel mass-spring-damper approach to incorporate the mechanical properties of the fibers in generating virtual fibrous structures that can best represent fibrous membranes. Such virtual fibrous structures are then subjected to a pressure estimation model, developed for the first time in …


Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain Aug 2018

Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain

LSU Doctoral Dissertations

In this study we investigate displacement mechanism for oil recovered using Gas- Assisted Gravity Drainage (GAGD) method. For a typical oil recovery under gravity drainage, the recovery profile can be characterized by an initial bulk flow which occurs rapidly and a later film flow that extends for a longer duration. It is the latter period where film spreading, the ability of oil to spread above water in the presence of gas, is identified as the displacement mechanism responsible for recovering the remaining oil in gravity drainage process. Literature survey indicates that mathematical models for gravity drainage do not account for …


Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain Aug 2018

Investigation Of Flow Mechanisms In Gas-Assisted Gravity Drainage Process, Iskandar Dzulkarnain

LSU Doctoral Dissertations

In this study we investigate displacement mechanism for oil recovered using Gas- Assisted Gravity Drainage (GAGD) method. For a typical oil recovery under gravity drainage, the recovery profile can be characterized by an initial bulk flow which occurs rapidly and a later film flow that extends for a longer duration. It is the latter period where film spreading, the ability of oil to spread above water in the presence of gas, is identified as the displacement mechanism responsible for recovering the remaining oil in gravity drainage process. Literature survey indicates that mathematical models for gravity drainage do not account for …


The Role Of Surface Active Compounds In Crude Oil On Reservoir Wettability., Paulina Metili Mwangi Jan 2017

The Role Of Surface Active Compounds In Crude Oil On Reservoir Wettability., Paulina Metili Mwangi

LSU Doctoral Dissertations

This study examines the role of crude oil’s surface active compounds (SAC) in determining the reservoir wettability. Wettability describes the relative preference of a reservoir rock for oil or water. Wettability influences the distribution of fluids in a reservoir and the efficiency of oil recovery methods. Unfortunately, the chemical mechanisms controlling wettability in individual reservoirs remain hazy. Wettability is conditional and is influenced by rock mineralogy, fluid chemistry, and temperature. An extensive experimental study was executed to understand the impact of naturally-occurring SACs typically found in crude oil, on the wettability of sandstone and carbonate rocks over a range of …


Quantifying Phase Configuration Inside An Intact Core Based On Wettability Using X-Ray Computed Tomography, Dinara Dussenova Jan 2014

Quantifying Phase Configuration Inside An Intact Core Based On Wettability Using X-Ray Computed Tomography, Dinara Dussenova

LSU Master's Theses

The ability to evaluate rock and fluid properties on the order of a few microns opens new areas in reservoir engineering and reservoir simulation. Multiple studies have been done on the application of x-ray computed tomography (microCT) for the pore-scale evaluation of fluid interfaces and rock-fluid interaction. A majority of the fluid flow governing interactions occur at the pore scale level and is usually overseen on large reservoir scales. Hence, it is important to carefully investigate such interactions. Multi-fluid-phase distribution and interaction of two immiscible fluids such as oil and water is one of the most important and constantly investigated …


Thermal, Compositional, And Salinity Effects On Wettability And Oil Recovery In A Dolomite Reservoir, Azadeh Kafili Kasmaei Jan 2013

Thermal, Compositional, And Salinity Effects On Wettability And Oil Recovery In A Dolomite Reservoir, Azadeh Kafili Kasmaei

LSU Master's Theses

Low salinity and composition effects in improving oil recovery in sandstone reservoirs are known. However, these effects have not been thoroughly studied for the carbonate reservoirs. Because of the lack of the clay minerals in the carbonate rocks, the mechanisms for the improved oil recovery with low salinity, brine composition, and temperature may not be the same as those for sandstones. This experimental study attempts to investigate the effects of low salinity, brine composition, and temperature on wettability and oil recovery in a dolomite reservoir. Also, it is attempted to confirm that wettability alteration is the main mechanism for improvement …


Effect Of Surfactants And Brine Salinity And Composition On Spreading, Wettability And Flow Behavior In Gas-Condensate Reservoirs, Yu Zheng Jan 2012

Effect Of Surfactants And Brine Salinity And Composition On Spreading, Wettability And Flow Behavior In Gas-Condensate Reservoirs, Yu Zheng

LSU Doctoral Dissertations

The well-known condensate blockage problem causes severe impairment of gas productivity as the flowing bottom-hole pressure falls below the dew point in gas-condensate reservoirs. Hence, this study attempts to investigate the concept of modifying the spreading coefficient and wettability using low-cost surfactants in the near wellbore region, to prevent the gas flow problems associated with condensate buildup. This study also examines the effect of brine salinity and composition on wettability, spreading and adhesion in condensate buildup regions, to evaluate the ability of brine salinity/composition for enhanced gas productivity in gas-condensate reservoirs. In this study, experiments were performed at both ambient …


Characterization Of Rock/Fluids Interactions At Reservoir Conditions, Dayanand Saini Jan 2010

Characterization Of Rock/Fluids Interactions At Reservoir Conditions, Dayanand Saini

LSU Doctoral Dissertations

In this study, interfacial phenomena of spreading, wettability, and rock/oil adhesion interactions in complex rock/oil/water systems were characterized at reservoir conditions of elevated pressures and temperatures. Capabilities of both ambient and reservoir condition optical cells were used for measuring the oil/water interfacial tension and dynamic (the water-receding and the water-advancing) contact angles for various complex rock/oil/water systems. Well known sessile oil drop volume alteration method was successfully used in this study for evaluating the applicability of the modified Young’s equation for characterizing the line tension in complex rock/oil/water systems at reservoir conditions. This appears to be first time when rock/fluids …


An Experimental Study Of Surfactant Enhanced Waterflooding, Paulina Metili Mwangi Jan 2010

An Experimental Study Of Surfactant Enhanced Waterflooding, Paulina Metili Mwangi

LSU Master's Theses

Surfactants have a variety of applications in the petroleum industry due to their remarkable ability to lower the oil-water interfacial tension and alter wettability. However, surfactant adsorption on rock surfaces has severely crippled this means of improving oil recovery due to the high cost associated with the large quantities of surfactant needed. A previous experimental study by Ayirala (2002) reported the development of mixed wettability using a nonionic surfactant. At this mixed-wet state he was able to recover about 94% of the original oil in place. The underlying motivation of this study was to achieve such high recoveries without using …


Surfactant-Induced Flow Behavior Effects In Gas Condensate Reservoirs, Bikash Deep. Saikia Jan 2010

Surfactant-Induced Flow Behavior Effects In Gas Condensate Reservoirs, Bikash Deep. Saikia

LSU Master's Theses

Natural gas, which accounts for a quarter of world’s energy, has been a major energy source because of its abundance and less impact on environment. With explorations at higher depth, pressure and temperature, the share of gas condensate reservoirs to global gas production is increasing. A unique production challenge associated with these reservoirs is the condensate blockage problem, which is the buildup of condensate liquid saturation around wellbore as a result of drawdown below dew point pressure. Mitigation of this problem requires in depth understanding of the multiphase flow of liquid and gas. Surfactants are well known in the literature …


Physical Model Study Of The Effects Of Wettability And Fractures On Gas Assisted Gravity Drainage (Gagd) Performance, Wagirin Ruiz Paidin Jan 2006

Physical Model Study Of The Effects Of Wettability And Fractures On Gas Assisted Gravity Drainage (Gagd) Performance, Wagirin Ruiz Paidin

LSU Master's Theses

The Gas-Assisted Gravity Drainage (GAGD) process was developed to take advantage of the natural segregation of injected gas from crude oil in the reservoir. It consists of placing a horizontal producer near the bottom of the reservoir and injecting gas using existing vertical wells. As the injected gas rises to the top to form a gas cap, oil and water drain down to the horizontal producer. Earlier experimental work using a physical model by Sharma had demonstrated the effectiveness of the GAGD process in improving the oil recovery when applied in water-wet porous media. The current research is an extension …


The Effects Of Rock And Fluids Characteristics On Reservoir Wettability, Chandra S. Vijapurapu Jan 2002

The Effects Of Rock And Fluids Characteristics On Reservoir Wettability, Chandra S. Vijapurapu

LSU Master's Theses

Wettability is the ability of a fluid to spread or adhere on a rock surface in the presence of other immiscible fluids. Knowledge of wettability is important to decide what production strategy needs to be employed for optimum oil recovery. Wettability is affected by rock mineralogy, rock surface roughness, and brine compositions. Previous studies have dealt with solid-liquid-vapor systems and those involving wettability characterization in solid-liquid-liquid systems have used contact angle techniques known to have reproducibility problems. In this study, a new technique called the Dual-Drop-Dual-Crystal (DDDC) Technique has been used to characterize wettability in terms of dynamic contact angles. …