Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID-19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce Oct 2020

Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce

Michigan Tech Publications

Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying …


Economic Savings For Scientific Free And Open Source Technology: A Review, Joshua M. Pearce Oct 2020

Economic Savings For Scientific Free And Open Source Technology: A Review, Joshua M. Pearce

Michigan Tech Publications

Both the free and open source software (FOSS) as well as the distributed digital manufacturing of free and open source hardware (FOSH) has shown particular promise among scientists for developing custom scientific tools. Early research found substantial economic savings for these technologies, but as the open source design paradigm has grown by orders of magnitude it is possible that the savings observed in the early work was isolated to special cases. Today there are examples of open source technology for science in the vast majority of disciplines and several resources dedicated specifically to publishing them. Do the tremendous economic savings …


Partially Reprapable Automated Open Source Bag Valve Mask-Based Ventilator, Aliaksei Petsiuk, Nagendra G. Tanikella, Samantha Dertinger, Adam Pringle, Shane Oberloier, Joshua M. Pearce Oct 2020

Partially Reprapable Automated Open Source Bag Valve Mask-Based Ventilator, Aliaksei Petsiuk, Nagendra G. Tanikella, Samantha Dertinger, Adam Pringle, Shane Oberloier, Joshua M. Pearce

Michigan Tech Publications

This study describes the development of a simple and easy-to-build portable automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the materials for the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 mL, breathing rates from 5 to 40 …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Reprapable Automated Open Source Bag Valve Mask-Based Ventilator, Aliaksei Petsiuk, Nagendra Gautam Tanikella, Samantha C. Dertinger, Adam Pringle, Shane Oberloier, Joshua M. Pearce Jun 2020

Reprapable Automated Open Source Bag Valve Mask-Based Ventilator, Aliaksei Petsiuk, Nagendra Gautam Tanikella, Samantha C. Dertinger, Adam Pringle, Shane Oberloier, Joshua M. Pearce

Michigan Tech Publications

This study describes the development of an automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 milliliters, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to …


Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. The parametric designs allow for adaptation to other core components and can be custom fit specifically to fire-fighter equipment, including …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce May 2018

Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce

Department of Materials Science and Engineering Publications

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D …


General Design Procedure For Free And Open-Source Hardware For Scientific Equipment, Shane W. Oberloier, Joshua M. Pearce Dec 2017

General Design Procedure For Free And Open-Source Hardware For Scientific Equipment, Shane W. Oberloier, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Distributed digital manufacturing of free and open-source scientific hardware (FOSH) used for scientific experiments has been shown to in general reduce the costs of scientific hardware by 90–99%. In part due to these cost savings, the manufacturing of scientific equipment is beginning to move away from a central paradigm of purchasing proprietary equipment to one in which scientists themselves download open-source designs, fabricate components with digital manufacturing technology, and then assemble the equipment themselves. This trend introduces a need for new formal design procedures that designers can follow when targeting this scientific audience. This study provides five steps in the …


Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce Jul 2017

Free And Open Source 3-D Model Customizer For Websites To Democratize Design With Openscad, Yuenyong Nilsiam, Joshua M. Pearce

Department of Materials Science and Engineering Publications

3-D printing has entered the consumer market because of recent radical price declines. Consumers can save substantial money by offsetting purchases with DIY pre-designed 3-D printed products. However, even more value can be obtained with distributed manufacturing using mass customization. Unfortunately, the average consumer is not technically sophisticated enough to easily design their own products. One solution to this is the use of an overlay on OpenSCAD parametric code, although current solutions force users to relinquish all rights to their own designs. There is thus a substantial need in the open source design community for a libre 3-D model customizer, …


Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce Jun 2017

Open Source Multi-Head 3d Printer For Polymer-Metal Composite Component Manufacturing, J. Laureto, Joshua M. Pearce

Department of Materials Science and Engineering Publications

As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing …


Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce Jan 2016

Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

RepRap 3-D printers and their derivatives using conventional firmware are limited by: 1) requiring technical knowledge, 2) poor resilience with unreliable hardware, and 3) poor integration in complicated systems. In this paper, a new control system called Franklin, for CNC machines in general and 3-D printers specifically, is presented that enables web-based three dimensional control of additive, subtractive and analytical tools from any Internet connected device. Franklin can be set up and controlled entirely from a web interface; it uses a custom protocol which allows it to continue printing when the connection is temporarily lost, and allows communication with scripts.


Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce Nov 2015

Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s …