Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Microstructure

Australian Institute for Innovative Materials - Papers

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Microstructure Refinement In W-Y2o3 Alloy Fabricated By Wet Chemical Method With Surfactant Addition And Subsequent Spark Plasma Sintering, Zhi Dong, Nan Liu, Zongqing Ma, Chenxi Liu, Qianying Guo, Zeid Abdullah Alothman, Yusuke Yamauchi, Md. Shahriar Al Hossain, Yongchang Liu Jan 2017

Microstructure Refinement In W-Y2o3 Alloy Fabricated By Wet Chemical Method With Surfactant Addition And Subsequent Spark Plasma Sintering, Zhi Dong, Nan Liu, Zongqing Ma, Chenxi Liu, Qianying Guo, Zeid Abdullah Alothman, Yusuke Yamauchi, Md. Shahriar Al Hossain, Yongchang Liu

Australian Institute for Innovative Materials - Papers

With the aim of preparing high performance oxide-dispersion-strengthened tungsten based alloys by powder metallurgy, the W-Y 2 O 3 composite nanopowder precursor was fabricated by an improved wet chemical method with anion surfactant sodium dodecyl sulfate (SDS) addition. It is found that the employment of SDS can dramatically decrease W grain size (about 40 nm) and improve the size uniformity. What's more, SDS addition can also remarkably improve the uniform dispersion of Y 2 O 3 particles during the synthesis process. For the alloy whose powder precursor was fabricated by traditional wet chemical method without SDS addition, only a few …


Microscopic Model For Exchange Bias From Grain-Boundary Disorder In A Ferromagnet/Antiferromagnet Thin Film With A Nanocrystalline Microstructure, David L. Cortie, A G. Biternas, R W. Chantrell, Xiaolin Wang, Frank Klose Jan 2014

Microscopic Model For Exchange Bias From Grain-Boundary Disorder In A Ferromagnet/Antiferromagnet Thin Film With A Nanocrystalline Microstructure, David L. Cortie, A G. Biternas, R W. Chantrell, Xiaolin Wang, Frank Klose

Australian Institute for Innovative Materials - Papers

Monte Carlo spin simulations were coupled to a Voronoi microstructure-generator to predict the magnitude and behavior of exchange bias in a ferromagnet/antiferromagnet (AF) thin film bilayer with a nanocrystalline microstructure. Our model accounts for the effects of irregular grain-shapes, finite-sized particles, and the possible presence of local random-fields originating from the antiferromagnet's grain-boundary regions. As the grain-boundary represents a crystal-structure distortion, we model the local effect on the exchange constants in the Gaussian approximation which can cause regions resembling a spin glass confined to an unusual 2D topology. Although an ensemble of completely disconnected AF grains isolated by non-magnetic barriers …


Power-Law Relationship Between Critical Current Density, Microstructure, And The N-Value In Mgb2 Superconductor Wires, Ashkan Motaman, Shaon Barua, Dipak Patel, Minoru Maeda, Kookchae Cheong, Jung Ho Kim, S X. Dou, Md Shahriar Al Hossain Jan 2014

Power-Law Relationship Between Critical Current Density, Microstructure, And The N-Value In Mgb2 Superconductor Wires, Ashkan Motaman, Shaon Barua, Dipak Patel, Minoru Maeda, Kookchae Cheong, Jung Ho Kim, S X. Dou, Md Shahriar Al Hossain

Australian Institute for Innovative Materials - Papers

Dissipation-free MgB2 superconducting wires are valuable in terms of practical applications. Herein, we have found a strong correlation between critical current density (J c ) and the n-value extracted from the electric field versus current density characteristic. The power-law relationship (m) between the J c and the n-value, n∝Jmc , represents a critical index which is strongly dependent on operating temperatures.


Microstructure And Metal-Dielectric Transition Behaviour In A Percolative Al2o3-Fe Composite Via Selective Reduction, Zidong Zhang, Runhua Fan, Zhicheng Shi, Kelan Yan, Zhijia Zhang, Xiaolin Wang, S X. Dou Jan 2013

Microstructure And Metal-Dielectric Transition Behaviour In A Percolative Al2o3-Fe Composite Via Selective Reduction, Zidong Zhang, Runhua Fan, Zhicheng Shi, Kelan Yan, Zhijia Zhang, Xiaolin Wang, S X. Dou

Australian Institute for Innovative Materials - Papers

The electromagnetic (EM) medium plays a key role in many areas, such as communications, stealth technology, etc. Different EM properties are required for different applications. In this paper, we have obtained tunable EM properties in an Al2O3-Fe composite via selective reduction. By adjusting the content of one functional component, the composite shows totally different EM properties, in accordance with the predictions of effective medium theory. Hybrid EM behaviour is obtained near the percolation threshold, which has a close relationship with its microstructure.


Investigation Of Phase Composition And Nanoscale Microstructure Of High-Energy Ball-Milled Mgcu Sample, Zongqing Ma, Yongchang Liu, Liming Yu, Qi Cai Jan 2012

Investigation Of Phase Composition And Nanoscale Microstructure Of High-Energy Ball-Milled Mgcu Sample, Zongqing Ma, Yongchang Liu, Liming Yu, Qi Cai

Australian Institute for Innovative Materials - Papers

The ball milling technique has been successfully applied to the synthesis of various materials such as equilibrium intermetallic phases, amorphous compounds, nanocrystalline materials, or metastable crystalline phases. However, how the phase composition and nanoscale microstructure evolute during ball milling in various materials is still controversial due to the complex mechanism of ball milling, especially in the field of solid-state amorphization caused by ball milling. In the present work, the phase evolution during the high-energy ball milling process of the Mg and Cu (atomic ratio is 1:1) mixed powder was investigated. It was found that Mg firstly reacts with Cu, forming …