Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Asset Cueing Nuclear Radiation Anomaly Detection Using An Embedded Neural Network Resource, April Inamura Jul 2023

Asset Cueing Nuclear Radiation Anomaly Detection Using An Embedded Neural Network Resource, April Inamura

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Nuclear radiation detection is inherently a challenging task, coupled with a high background variation or increase in anomalies, the accuracy for detection can plummet. A key factor in the success of nuclear detection hinges on the sensor’s ability to generalize its model and directly leads to the model’s robustness. The goal of this project is to develop algorithms suitable for use on the University of Nebraska-Lincoln’s Pingora chip, a low-power, system-on-chip device with an active neural processing unit (NPU) made for nuclear radiation detection. The thesis aims to improve Pingora’s overall generalization ability in nuclear radiation source detection. A multiphase …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang Jan 2023

Decoupling Optimization For Complex Pdn Structures Using Deep Reinforcement Learning, Ling Zhang, Li Jiang, Jack Juang, Zhiping Yang, Er Ping Li, Chulsoon Hwang

Electrical and Computer Engineering Faculty Research & Creative Works

This Article Presents a New Optimization Method for Complex Power Distribution Networks (PDNs) with Irregular Shapes and Multilayer Structures using Deep Reinforcement Learning (DRL), Which Has Not Been Considered Before. a Fast Boundary Integration Method is Applied to Compute the Impedance Matrix of a PDN Structure. Subsequently, a New DRL Algorithm based on Proximal Policy Optimization (PPO) is Proposed to Optimize the Decoupling Capacitor (Decap) Placement by Minimizing the Number of Decaps While Satisfying the Desired Target Impedance. in the Proposed Approach, the PDN Structure Information is Encoded into Matrices and Serves as the Input of the DRL Algorithm, Which …


Quantum Classifiers For Video Quality Delivery, Tautvydas Lisas, Ruairí De Fréin Jan 2023

Quantum Classifiers For Video Quality Delivery, Tautvydas Lisas, Ruairí De Fréin

Conference papers

Classical classifiers such as the Support Vector Classifier (SVC) struggle to accurately classify video Quality of Delivery (QoD) time-series due to the challenge in constructing suitable decision boundaries using small amounts of training data. We develop a technique that takes advantage of a quantum-classical hybrid infrastructure called Quantum-Enhanced Codecs (QEC). We evaluate a (1) purely classical, (2) hybrid kernel, and (3) purely quantum classifier for video QoD congestion classification, where congestion is either low, medium or high, using QoD measurements from a real networking test-bed. Findings show that the SVC performs the classification task 4% better in the low congestion …


Load-Adjusted Prediction For Proactive Resource Management And Video Server Demand Profiling, Obinna Izima, Ruairí De Fréin Jul 2022

Load-Adjusted Prediction For Proactive Resource Management And Video Server Demand Profiling, Obinna Izima, Ruairí De Fréin

Articles

To lower costs associated with providing cloud resources, a network manager would like to estimate how busy the servers will be in the near future. This is a necessary input in deciding whether to scale up or down computing requirements. We formulate the problem of estimating cloud computational requirements as an integrated framework comprising of a learning and an action stage. In the learning stage, we use Machine Learning (ML) models to predict the video Quality of Delivery (QoD) metric for cloud-hosted servers and use the knowledge gained from the process to make resource management decisions during the action stage. …


An Intelligent Distributed Ledger Construction Algorithm For Iot, Charles Rawlins, Jagannathan Sarangapani Jan 2022

An Intelligent Distributed Ledger Construction Algorithm For Iot, Charles Rawlins, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

Blockchain is the next generation of secure data management that creates near-immutable decentralized storage. Secure cryptography created a niche for blockchain to provide alternatives to well-known security compromises. However, design bottlenecks with traditional blockchain data structures scale poorly with increased network usage and are extremely computation-intensive. This made the technology difficult to combine with limited devices, like those in Internet of Things networks. In protocols like IOTA, replacement of blockchain's linked-list queue processing with a lightweight dynamic ledger showed remarkable throughput performance increase. However, current stochastic algorithms for ledger construction suffer distinct trade-offs between efficiency and security. This work proposed …


A Survey Of Machine Learning Techniques For Video Quality Prediction From Quality Of Delivery Metrics, Obinna Izima, Ruairí De Fréin, Ali Malik Nov 2021

A Survey Of Machine Learning Techniques For Video Quality Prediction From Quality Of Delivery Metrics, Obinna Izima, Ruairí De Fréin, Ali Malik

Articles

A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions …


Machine Learning For High-Fidelity Prediction Of Cement Hydration Kinetics In Blended Systems, Rachel Cook, Taihao Han, Alaina Childers, Cambria Ryckman, Kamal Khayat, Hongyan Ma, Jie Huang, Aditya Kumar Oct 2021

Machine Learning For High-Fidelity Prediction Of Cement Hydration Kinetics In Blended Systems, Rachel Cook, Taihao Han, Alaina Childers, Cambria Ryckman, Kamal Khayat, Hongyan Ma, Jie Huang, Aditya Kumar

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The production of ordinary Portland cement (OPC), the most broadly utilized man-made material, has been scrutinized due to its contributions to global anthropogenic CO2 emissions. Thus -- to mitigate CO2 emissions -- mineral additives have been promulgated as partial replacements for OPC. However, additives -- depending on their physiochemical characteristics -- can exert varying effects on OPC's hydration kinetics. Therefore -- in regards to more complex systems -- it is infeasible for semi-empirical kinetic models to reveal the underlying nonlinear composition-property (i.e., reactivity) relationships. In the past decade or so, machine learning (ML) has arisen as a promising, …


Physical-Based Training Data Collection Approach For Data-Driven Lithium-Ion Battery State-Of-Charge Prediction, Jie Li, Will Ziehm, Jonathan W. Kimball, Robert Landers, Jonghyun Park Sep 2021

Physical-Based Training Data Collection Approach For Data-Driven Lithium-Ion Battery State-Of-Charge Prediction, Jie Li, Will Ziehm, Jonathan W. Kimball, Robert Landers, Jonghyun Park

Electrical and Computer Engineering Faculty Research & Creative Works

Data-Driven approaches for State of Charge (SOC) prediction have been developed considerably in recent years. However, determining the appropriate training dataset is still a challenge for model development and validation due to the considerably varieties of lithium-ion batteries in terms of material, types of battery cells, and operation conditions. This work focuses on optimization of the training data set by using simple measurable data sets, which is important for the accuracy of predictions, reduction of training time, and application to online estimation. It is found that a randomly generated data set can be effectively used for the training data set, …


Learning To Detect: A Data-Driven Approach For Network Intrusion Detection, Zachary Tauscher, Yushan Jiang, Kai Zhang, Jian Wang, Houbing Song Aug 2021

Learning To Detect: A Data-Driven Approach For Network Intrusion Detection, Zachary Tauscher, Yushan Jiang, Kai Zhang, Jian Wang, Houbing Song

Publications

With massive data being generated daily and the ever-increasing interconnectivity of the world’s Internet infrastructures, a machine learning based intrusion detection system (IDS) has become a vital component to protect our economic and national security. In this paper, we perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks. Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy, in which the intrusion and normal behavior are classified firstly, and then the specific types of …


Bibliometric Review Of Predictive Maintenance Using Vibration Analysis, Aashna Midha Ms., Ishita Maheshwari Ms., Kaushik Ojha Mr., Kritika Gupta Ms., Shripad V. Deshpande Mr. May 2021

Bibliometric Review Of Predictive Maintenance Using Vibration Analysis, Aashna Midha Ms., Ishita Maheshwari Ms., Kaushik Ojha Mr., Kritika Gupta Ms., Shripad V. Deshpande Mr.

Library Philosophy and Practice (e-journal)

Every day the world is depending more and more on machines in almost every aspect of life. With the increasing use of machines, there also needs to be an evolution in the maintenance of these machines. Predictive maintenance is a process used to monitor the equipment and machinery during its operation to detect any damages and/or deteriorations and enable the required maintenance plan in advance, resulting in reduced operational costs and full utilization of tools and parts. The fundamental goal of this bibliometric review paper is a comprehension of the extent and sources of the literature available for predictive maintenance …


Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang Mar 2021

Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Mild traumatic brain injury (mTBI) strongly associates with chronic neurodegenerative impairments such as post-traumatic stress disorder (PTSD) and mild cognitive impairment. Early detection of concussive events would significantly enhance the understanding of head injuries and provide better guidance for urgent diagnoses and the best clinical practices for achieving full recovery. New method: A smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real-time sensing of blunt-force impact events to helmets. The transient signals provide both magnitude and directional information about the impact event, and the data can be used for training machine learning (ML) …


Time Series Data Analysis Using Machine Learning-(Ml) Approach, Mvv Prasad Kantipudi Dr., Pradeep Kumar N.S Dr., S.Sreenath Kashyap Dr., Ss Anusha Vemuri Ms Jan 2021

Time Series Data Analysis Using Machine Learning-(Ml) Approach, Mvv Prasad Kantipudi Dr., Pradeep Kumar N.S Dr., S.Sreenath Kashyap Dr., Ss Anusha Vemuri Ms

Library Philosophy and Practice (e-journal)

Healthcare benefits related to continuous monitoring of human movement and physical activity can potentially reduce the risk of accidents associated with elderly living alone at home. Based on the literature review, it is found that many studies focus on human activity recognition and are still active towards achieving practical solutions to support the elderly care system. The proposed system has introduced a joint approach of machine learning and signal processing technology for the recognition of human's physical movements using signal data generated by accelerometer sensors. The framework adopts the concept of DSP to select very descriptive feature sets and uses …


Defense By Deception Against Stealthy Attacks In Power Grids, Md Hasan Shahriar Nov 2020

Defense By Deception Against Stealthy Attacks In Power Grids, Md Hasan Shahriar

FIU Electronic Theses and Dissertations

Cyber-physical Systems (CPSs) and the Internet of Things (IoT) are converging towards a hybrid platform that is becoming ubiquitous in all modern infrastructures. The integration of the complex and heterogeneous systems creates enormous space for the adversaries to get into the network and inject cleverly crafted false data into measurements, misleading the control center to make erroneous decisions. Besides, the attacker can make a critical part of the system unavailable by compromising the sensor data availability. To obfuscate and mislead the attackers, we propose DDAF, a deceptive data acquisition framework for CPSs' hierarchical communication network. Each switch in the hierarchical …


Forecasting Vegetation Health In The Mena Region By Predicting Vegetation Indicators With Machine Learning Models, Sachi Perera, Wenzhao Li, Erik Linstead, Hesham El-Askary Sep 2020

Forecasting Vegetation Health In The Mena Region By Predicting Vegetation Indicators With Machine Learning Models, Sachi Perera, Wenzhao Li, Erik Linstead, Hesham El-Askary

Mathematics, Physics, and Computer Science Faculty Articles and Research

Machine learning (ML) techniques can be applied to predict and monitor drought conditions due to climate change. Predicting future vegetation health indicators (such as EVI, NDVI, and LAI) is one approach to forecast drought events for hotspots (e.g. Middle East and North Africa (MENA) regions). Recently, ML models were implemented to predict EVI values using parameters such as land types, time series, historical vegetation indices, land surface temperature, soil moisture, evapotranspiration etc. In this work, we collected the MODIS atmospherically corrected surface spectral reflectance imagery with multiple vegetation related indices for modeling and evaluation of drought conditions in the MENA …


Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen Aug 2020

Evaluation Of Standard And Semantically-Augmented Distance Metrics For Neurology Patients, Daniel B. Hier, Jonathan Kopel, Steven U. Brint, Donald C. Wunsch, Gayla R. Olbricht, Sima Azizi, Blaine Allen

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Patient distances can be calculated based on signs and symptoms derived from an ontological hierarchy. There is controversy as to whether patient distance metrics that consider the semantic similarity between concepts can outperform standard patient distance metrics that are agnostic to concept similarity. The choice of distance metric can dominate the performance of classification or clustering algorithms. Our objective was to determine if semantically augmented distance metrics would outperform standard metrics on machine learning tasks.

Methods: We converted the neurological findings from 382 published neurology cases into sets of concepts with corresponding machine-readable codes. We calculated patient distances by …


Towards Uav Assisted 5g Public Safety Network, Abhaykumar Kumbhar Jan 2020

Towards Uav Assisted 5g Public Safety Network, Abhaykumar Kumbhar

FIU Electronic Theses and Dissertations

Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC.

However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with …


Applications Of Artificial Intelligence To Cryptography, Jonathan Blackledge, Napo Mosola Jan 2020

Applications Of Artificial Intelligence To Cryptography, Jonathan Blackledge, Napo Mosola

Articles

This paper considers some recent advances in the field of Cryptography using Artificial Intelligence (AI). It specifically considers the applications of Machine Learning (ML) and Evolutionary Computing (EC) to analyze and encrypt data. A short overview is given on Artificial Neural Networks (ANNs) and the principles of Deep Learning using Deep ANNs. In this context, the paper considers: (i) the implementation of EC and ANNs for generating unique and unclonable ciphers; (ii) ML strategies for detecting the genuine randomness (or otherwise) of finite binary strings for applications in Cryptanalysis. The aim of the paper is to provide an overview on …


Sensor Emulation With Physiolocal Data In Immersive Virtual Reality Driving Simulator, Jungsu Pak, Oliver Mathias, Ariane Guirguis, Uri Maoz Dec 2019

Sensor Emulation With Physiolocal Data In Immersive Virtual Reality Driving Simulator, Jungsu Pak, Oliver Mathias, Ariane Guirguis, Uri Maoz

Student Scholar Symposium Abstracts and Posters

Can we enhance the safety and comfort of AVs by training AVs with physiological data of human drivers? We will train and compare AV algorithm with/without physiological data.


The Challenges Facing Autonomous Vehicles And The Progress In Addressing Them, Garrett Johnson Dec 2019

The Challenges Facing Autonomous Vehicles And The Progress In Addressing Them, Garrett Johnson

Senior Honors Theses

Autonomous vehicles are an emerging technology that faces challenges, both technical and socioeconomic. This paper first addresses specific technical challenges, such as parsing visual data, communicating with other entities, and making decisions based on environmental knowledge. The technical challenges are to be addressed by the fields of image processing, Vehicle to Everything Communication (V2X), and decision-making systems. Non-technical challenges such as ethical decision making, social acceptance, and economic pushback are also discussed. Ethical decision making is discussed in the framework of deontology vs utilitarianism, while social acceptance of utilitarian autonomous vehicles is also investigated. Last, the likely economic impact is …


Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life Oct 2019

Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life

Mahurin Honors College Capstone Experience/Thesis Projects

According to the United Nations, the world population is expected to grow from its current 7 billion to 9.7 billion by the year 2050. During this time, global food demand is also expected to increase by between 59% and 98% due to the population increase, accompanied by an increasing demand for protein due to a rising standard of living throughout developing countries. [1] Meeting this increase in required food production using present agricultural practices would necessitate a similar increase in farmland; a resource which does not exist in abundance. Therefore, in order to meet growing food demands, new methods will …


Combining Virtual Reality And Machine Learning For Enhancing The Resiliency Of Transportation Infrastructure In Extreme Events, Supratik Mukhopadhyay, Yimin Zhu, Ravindra Gudishala Sep 2019

Combining Virtual Reality And Machine Learning For Enhancing The Resiliency Of Transportation Infrastructure In Extreme Events, Supratik Mukhopadhyay, Yimin Zhu, Ravindra Gudishala

Data

Corresponding data set for Tran-SET Project No. 18ITSLSU09. Abstract of the final report is stated below for reference:

"Traffic management models that include route choice form the basis of traffic management systems. High-fidelity models that are based on rapidly evolving contextual conditions can have significant impact on smart and energy efficient transportation. Existing traffic/route choice models are generic and are calibrated on static contextual conditions. These models do not consider dynamic contextual conditions such as the location, failure of certain portions of the road network, the social network structure of population inhabiting the region, route choices made by other drivers, …


Combining Virtual Reality And Machine Learning For Enhancing The Resiliency Of Transportation Infrastructure In Extreme Events, Supratik Mukhopadhyay, Yimin Zhu, Ravindra Gudishala Sep 2019

Combining Virtual Reality And Machine Learning For Enhancing The Resiliency Of Transportation Infrastructure In Extreme Events, Supratik Mukhopadhyay, Yimin Zhu, Ravindra Gudishala

Publications

Traffic management models that include route choice form the basis of traffic management systems. High-fidelity models that are based on rapidly evolving contextual conditions can have significant impact on smart and energy efficient transportation. Existing traffic/route choice models are generic and are calibrated on static contextual conditions. These models do not consider dynamic contextual conditions such as the location, failure of certain portions of the road network, the social network structure of population inhabiting the region, route choices made by other drivers, extreme conditions, etc. As a result, the model’s predictions are made at an aggregate level and for a …


Non-Intrusive Affective Assessment In The Circumplex Model From Pupil Diameter And Facial Expression Monitoring, Sudarat Tangnimitchok Jun 2019

Non-Intrusive Affective Assessment In The Circumplex Model From Pupil Diameter And Facial Expression Monitoring, Sudarat Tangnimitchok

FIU Electronic Theses and Dissertations

Automatic methods for affective assessment seek to enable computer systems to recognize the affective state of their users. This dissertation proposes a system that uses non-intrusive measurements of the user’s pupil diameter and facial expression to characterize his /her affective state in the Circumplex Model of Affect. This affective characterization is achieved by estimating the affective arousal and valence of the user’s affective state.

In the proposed system the pupil diameter signal is obtained from a desktop eye gaze tracker, while the face expression components, called Facial Animation Parameters (FAPs) are obtained from a Microsoft Kinect module, which also captures …


Connectivity Analysis Of Electroencephalograms In Epilepsy, Panuwat Janwattanapong Nov 2018

Connectivity Analysis Of Electroencephalograms In Epilepsy, Panuwat Janwattanapong

FIU Electronic Theses and Dissertations

This dissertation introduces a novel approach at gauging patterns of informa- tion flow using brain connectivity analysis and partial directed coherence (PDC) in epilepsy. The main objective of this dissertation is to assess the key characteristics that delineate neural activities obtained from patients with epilepsy, considering both focal and generalized seizures. The use of PDC analysis is noteworthy as it es- timates the intensity and direction of propagation from neural activities generated in the cerebral cortex, and it ascertains the coefficients as weighted measures in formulating the multivariate autoregressive model (MVAR). The PDC is used here as a feature extraction …


Game-Theoretic And Machine-Learning Techniques For Cyber-Physical Security And Resilience In Smart Grid, Longfei Wei Oct 2018

Game-Theoretic And Machine-Learning Techniques For Cyber-Physical Security And Resilience In Smart Grid, Longfei Wei

FIU Electronic Theses and Dissertations

The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and …


Machine Learning Based Computational Electromagnetic Analysis For Electromagnetic Compatibility, L. (Lijun) J. Jiang, H. M. Yao, H. H. Zhang, Y. W. Qin Oct 2018

Machine Learning Based Computational Electromagnetic Analysis For Electromagnetic Compatibility, L. (Lijun) J. Jiang, H. M. Yao, H. H. Zhang, Y. W. Qin

Electrical and Computer Engineering Faculty Research & Creative Works

While machine learning is becoming a demanding request in every corner of modern technology development, we are trying to see if we could make computational electromagnetic algorithms compatible to machine learning methods. In this paper, we introduce two efforts in line with this direction: solving method of moments (MoM) can be seen as a training training process. Consequently, the artificial neural network (ANN) could be used to solve MoM naturally through training. Amazon Web Service (AWS) can be used as the computations platform to utilize the existing hardware and software resources for machine learning. Another effort regarding to the nonlinear …


Video Quality Prediction Under Time-Varying Loads, Obinna Izima, Ruairí De Fréin, Mark Davis Jan 2018

Video Quality Prediction Under Time-Varying Loads, Obinna Izima, Ruairí De Fréin, Mark Davis

Conference papers

We are on the cusp of an era where we can responsively and adaptively predict future network performance from network device statistics in the Cloud. To make this happen, regression-based models have been applied to learn mappings between the kernel metrics of a machine in a service cluster and service quality metrics on a client machine. The path ahead requires the ability to adaptively parametrize learning algorithms for arbitrary problems and to increase computation speed. We consider methods to adaptively parametrize regularization penalties, coupled with methods for compensating for the effects of the time-varying loads present in the system, namely …


Machine Learning Based Neural Network Solving Methods For The Fdtd Method, He Ming Yao, Li (Lijun) Jun Jiang Jan 2018

Machine Learning Based Neural Network Solving Methods For The Fdtd Method, He Ming Yao, Li (Lijun) Jun Jiang

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, two novel computational processes are proposed to solve Finite-Difference Time-Domain (FDTD) based on machine learning deep neural networks. The field and boundary conditions are employed to establish recurrent neural network FDTD (RNN-FDTD) model and convolution neural network FDTD (CNN-FDTD) model respectively. Numerical examples from scalar wave equations are provided to benchmark the performance of the proposed methods. The results demonstrate that the newly proposed methods could solve FDTD steps with satisfactory accuracy. According to our knowledge, these are unreported new approaches for machine learning based FDTD solving methods.


Machine Learning Based Method Of Moments (Ml-Mom), He Ming Yao, Li (Lijun) Jun Jiang, Yu Wei Qin Oct 2017

Machine Learning Based Method Of Moments (Ml-Mom), He Ming Yao, Li (Lijun) Jun Jiang, Yu Wei Qin

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes a novel method by rethinking the method of moments (MoM) solving process into a machine learning training process. Based on the artificial neural network (ANN), the conventional MoM matrix is treated as the training data set, based on which machine learning training process becomes conventional linear algebra MoM solving process. The trained result is the solution of MoM. The multiple linear regression (MLR) is utilized to train the model. Amazon Web Service (AWS) is used as the computations platform to utilize the existing hardware and software resources for machine learning. To verify the feasibility of the proposed …