Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Predicting Dynamic Fragmentation Characteristics From High-Impact Energy Events Utilizing Terrestrial Static Arena Test Data And Machine Learning, Katharine Larsen, Riccardo Bevilacqua, Omkar S. Mulekar, Elisabetta L. Jerome, Thomas J. Hatch-Aguilar Aug 2023

Predicting Dynamic Fragmentation Characteristics From High-Impact Energy Events Utilizing Terrestrial Static Arena Test Data And Machine Learning, Katharine Larsen, Riccardo Bevilacqua, Omkar S. Mulekar, Elisabetta L. Jerome, Thomas J. Hatch-Aguilar

Student Works

To continue space operations with the increasing space debris, accurate characterization of fragment fly-out properties from hypervelocity impacts is essential. However, with limited realistic experimentation and the need for data, available static arena test data, collected utilizing a novel stereoscopic imaging technique, is the primary dataset for this paper. This research leverages machine learning methodologies to predict fragmentation characteristics using combined data from this imaging technique and simulations, produced considering dynamic impact conditions. Gaussian mixture models (GMMs), fit via expectation maximization (EM), are used to model fragment track intersections on a defined surface of intersection. After modeling the fragment distributions, …


Machine Learning In Aerodynamic Shape Optimization, Jichao Li, Xiaosong Du, Joaquim R.R.A. Martins Oct 2022

Machine Learning In Aerodynamic Shape Optimization, Jichao Li, Xiaosong Du, Joaquim R.R.A. Martins

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, …