Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Deep learning

University of Nebraska - Lincoln

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Sc-Fuse: A Feature Fusion Approach For Unpaved Road Detection From Remotely Sensed Images, Aniruddh Saxena Dec 2023

Sc-Fuse: A Feature Fusion Approach For Unpaved Road Detection From Remotely Sensed Images, Aniruddh Saxena

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Road network extraction from remote sensing imagery is crucial for numerous applications, ranging from autonomous navigation to urban and rural planning. A particularly challenging aspect is the detection of unpaved roads, often underrepresented in research and data. These roads display variability in texture, width, shape, and surroundings, making their detection quite complex. This thesis addresses these challenges by creating a specialized dataset and introducing the SC-Fuse model.

Our custom dataset comprises high resolution remote sensing imagery which primarily targets unpaved roads of the American Midwest. To capture the diverse seasonal variation and their impact, the dataset includes images from different …


Deep Learning And Transfer Learning In The Classification Of Eeg Signals, Jacob M. Williams Aug 2017

Deep Learning And Transfer Learning In The Classification Of Eeg Signals, Jacob M. Williams

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Deep learning is seldom used in the classification of electroencephalography (EEG) signals, despite achieving state of the art classification accuracies in other spatial and time series data. Instead, most research has continued to use manual feature extraction followed by a traditional classifier, such as SVMs or logistic regression. This is largely due to the low number of samples per experiment, high-dimensional nature of the data, and the difficulty in finding appropriate deep learning architectures for classification of EEG signals. In this thesis, several deep learning architectures are compared to traditional techniques for the classification of visually evoked EEG signals. We …