Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Deep learning

Electrical and Computer Engineering

West Virginia University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Computational Mechanisms Of Face Perception, Jinge Wang Jan 2023

Computational Mechanisms Of Face Perception, Jinge Wang

Graduate Theses, Dissertations, and Problem Reports

The intertwined history of artificial intelligence and neuroscience has significantly impacted their development, with AI arising from and evolving alongside neuroscience. The remarkable performance of deep learning has inspired neuroscientists to investigate and utilize artificial neural networks as computational models to address biological issues. Studying the brain and its operational mechanisms can greatly enhance our understanding of neural networks, which has crucial implications for developing efficient AI algorithms. Many of the advanced perceptual and cognitive skills of biological systems are now possible to achieve through artificial intelligence systems, which is transforming our knowledge of brain function. Thus, the need for …


Video And Image Super-Resolution Via Deep Learning With Attention Mechanism, Xuan Xu Jan 2020

Video And Image Super-Resolution Via Deep Learning With Attention Mechanism, Xuan Xu

Graduate Theses, Dissertations, and Problem Reports

Image demosaicing, image super-resolution and video super-resolution are three important tasks in color imaging pipeline. Demosaicing deals with the recovery of missing color information and generation of full-resolution color images from so-called Color filter Array (CFA) such as Bayer pattern. Image super-resolution aims at increasing the spatial resolution and enhance important structures (e.g., edges and textures) in super-resolved images. Both spatial and temporal dependency are important to the task of video super-resolution, which has received increasingly more attention in recent years. Traditional solutions to these three low-level vision tasks lack generalization capability especially for real-world data. Recently, deep learning methods …